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CHAPTER 1

Introduction

Nonlinear problems such as those that naturally arise from geometry and

physics like the study of geodesics, minimal surfaces, harmonic maps, conformal
metrics with prescribed curvature, Hamiltonian systems, solutions of boundary
value problems and Yang-Mills fields, can all be characterised as critical points u
of some functional F' on an appropriate space X, i.e., F/(u) = 0. So one is con-
cerned with problems of existence, location, multiplicity and qualitative properties
of critical points in such contexts and how they relate to the (weak) solutions they
represent for the corresponding Euler-Lagrange equations.
The points of maxima or minima, if it exists, are the simplest example of critical
points for F. In general the functional F' maybe unbounded on X or it may not
achieve maximum or the minimum value(s). Locating critical levels for a smooth
functional F' on a space X essentially reduces to capturing the changes in the topol-
ogy of the sublevel sets F, = {zx € X : F(z) < a} as a varies in R. Under the right
conditions on F', classical Morse theory states that a non-trivial topology between
F, and F} should detect a critical level ¢ between a and b. The next simplest
example short of considering minimisation consists of taking two points ug and wu
both lying below level a which are not connected in F,, but become so if one can
climb above that level. This means that the the sublevels F,, and F; have different
topologies for some b > a and this yields a critical point ¢ between levels a and
b. This setting is often called the Mountain-Pass Principle since in practice one
insures that the two villages are disconnected below level a by showing that they
are separated by a mountain range with minimal altitude exceeding a.

The above proposition identifies a potential critical level. The problem of ex-
istence of a critical point then reduces to proving that a sequence (z,,) satisfying
lim F(x,,)=cand lim |F'(z)] = 0 is relatively compact in X. This is usually
m—0o0 m—0o0
where the hard analysis is needed. Any function possessing such a property is said
to satisfy the Palais-Smale condition at level ¢, in short (PS),.

In this memoir we study some variational elliptic partial differential equations with-
out the compactness property as described above. In problems of these kind one
encounters a blow-up phenomenon caused by scale and conformal invariance, which
makes it non-compact. However, this lack of compactness is not always the final
word and a finer analysis of the behavior of non-compact sequences may provide
us with some new conditions that could prevent such an eventuality. As a model
case, one can think of the well studied stationary Schrodinger equation

Au+ hu = |u|ﬁu in Q
u=20 on 00



2 1. INTRODUCTION

where A := —div(V) is the Laplacian operator with negative sign convention, {2
is a bounded smooth domain in R™ or a closed Riemannian manifold of dimension
n >3 and h € C1(Q).

Broadly speaking, this memoir is divided into two parts.

Part 1: We analyse the question of existence for some Polyharmonic boundary
value problems with critical Sobolev growth on a compact Riemannian
manifold.

Part 2: Here we do a blow-up analysis of the nonlinear elliptic Hardy-Sobolev
equation with critical growth and vanishing boundary singularity.

We give a quick overview of these topics, providing also an outline of the content
of this memoir.

Part 1

Let M be a closed manifold of dimension n > 3 and let k be a positive integer
such that 2k < n. In recent years, there have been extensive study of the relation-
ship between the conformally covariant operators, that is, operators which satisfy
some invariance property under conformal change of metric on M, their associated
conformal invariants, and the study of the related partial differential equations.
In their celebrated work Graham-Jenne-Mason-Sparling [27] provided a systematic
construction of a family of conformally covariant operators (GJMS operators for
short) based on the ambient metric of Fefferman-Graham [18]. More precisely, let
M be the set of Riemannian metrics on M, then for all g in M, there exists a
local differential operator Py : C°°(M) — C>(M) such that Py = A% 4 l.0.t where

Ay = —divy(V), and, given u > 0, v € C°°(M) and defining § = uﬁg7 one has
(1.1) Py(p) = ufﬁpg (up) for all ¢ € C°(M).

Moreover, P, is self-adjoint with respect to the L?—scalar product. A scalar in-
variant is associated to this operator, namely the @-curvature, denoted as Q.
When k£ = 1, P, is the conformal Laplacian and the Q—curvature is the scalar
curvature multiplied by a constant. When k = 2, P, is the Paneitz operator in-
troduced in [40]. The @Q-curvature was introduced by Branson and Orsted [9]
and later generalised by Branson[7,8]. In the specific case n > 2k, we have that

Qg = ﬁPg(l). Then, taking ¢ = 1in (1.1), we get that Pyu = "*22’“C)guﬁigflz on
M. Therefore, prescribing the Q—curvature in a conformal class amounts to solv-
ing a nonlinear elliptic partial differential equation of 2k'” order. Results for the
prescription of the QQ—curvature problem for the Paneitz operator (namely k = 2)
are in Djadli-Hebey-Ledoux [16] and Esposito-Robert [17] for instance. Recently,
Gursky-Malchiodi [28] proved the existence of a metric with constant Q—curvature
(still for k& = 2) provided certain geometric hypotheses on the manifold (M, g) holds.

These hypotheses have been simplified by Hang-Yang [31].

This leads us to investigate the existence of u € C*°(M), u > 0, given f € C°(M),
such that

(1.2) Pu = fu%_1 in M,
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where Qﬁk = 2% and P : C*(M) — C*°(M) is a smooth self-adjoint 2k-th order

partial differential operator defined by

k—1
(1.3) Pu=Afu+ Y (=19 (A, gy, V)
1=0
here the indices are raised via the musical isomorphism and for all [ € {0,...,k—1},

A, is a smooth symmetric T4 -tensor field on M (that is: A;(X,Y) = A;(Y, X) for
all T¢-tensors X,Y on M). When P := P,, then (1.2) is equivalent to saying that

ol _a
Qy = ﬁf with § = un=2kg.

Equation (1.2) has a variational structure. Since P is self-adjoint in L?, we have
that for all u,v € C*°(M).

k—1
/uP(v) dvg = /vP(u) dvg = /A’;/QUA’;/%dvg+Z/Al(vlu,vlp) dug
M M M 1=0 3y
where
A2y, — { Al'u %fl = 2m is even
g VAZw ifl=2m+1is odd

and when [ = 2m+1 is odd, AS/Zu A§/2U = (VA;”u, VA;"U)Q. If P is coercive and

f > 0, then, up to multiplying by a constant, any non-trivial solution u € C°°(M)
to (1.2) is a critical point of the functional

J uP(u)dvg
(1.4) w Jp(u) = —H

(I\flf|u|2ii dvg)

The natural space to study Jp is the Sobolev space HZ(M); where for 1 < [ <
k, H}(M) is the completion of C°°(M) with respect to the u ZZ:O IV *ul|2.
Equivalently (see Robert [43]), H?(M) can also be seen as the completion of the
space C*° (M) with respect to the norm

l
lul 72 = Z/(Ag%f dv,

a:OM

i
2/2}

By the Sobolev embedding theorem we get a continuous but not compact embedding
of H2(M) into L% (M). The continuity of the embedding H7 (M) — L% (M) yields
a pair of real numbers A, B such that for all u € H? (M)

2 2
(15) s < A [ QY20 vy + Bl
M

Following the terminology introduced by Hebey [32], we then define
A(M) :=1inf{A € R: 3 B € R with the property that inequality (1.5) holds}

As in the classical case k = 1 by Aubin, the value of A(M) depends only on k and
the dimension n. More precisely, we let 2%2(R™) be the completion of C2°(R") for
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the norm u — [|A*/2u|2(gn), and define Ko(n, k) > 0

(1.6) _ 4 Jpn (A20)? do
’ Ko(n,k) = wezr2®m)\{0} " =
(fRn |u‘2’° da:) k

as the best constant in the Sobolev’s continuous embedding Z%2(R") < L2 (R™).
It follows from Lions [36], Ge-Wei-Zhou [20], that the extremal functions for the
Sobolev inequality (1.6) exist and are exactly multiples of the functions

A

=
1+)\|x|) ack5A>0

Ua,)\ = On Lk (

where o, s are explicit.

For polyharmonic operators on a compact Riemannian manifold we obtain the
following best constant result:

Theorem 1.1. (Mazumdar [37], see Chapter 2) Let (M, g) be a smooth, com-
pact Riemannian manifold of dimension n and let k be a positive integer such that
2k < n. Then A(M) = Ko(n,k) > 0. In particular, for any € > 0, there exists
B, € R such that for all w € HZ(M) one has

2
S
([ 1t o) < (Kot +) (@802 oy + Bl
M

As a consequence of this result, we obtain a description of noncompact bounded
families in HZ(M). This is the extension of the PL Lions concentration compactness
lemma for Riemannian manifolds:

Theorem 1.2. (Mazumdar [38], see Chapter 2) Let (M,g) be a smooth, com-
pact Riemannian manifold of dimension n and let k be a positve integer such that
2k < n. Suppose (u,) be a bounded sequence in HZ(M) such that pm, — p weakly
in M

(a) um —u  weakly in H}(M)

(b) pim = |Alg€/2um|§ dvg — p weakly in the sense of measures
(¢) vm = |um|2“k dvg = v weakly in the sense of measures

Then we have:
(i) There exists an at most countable index set T, a family of distinct points
{z; € M : i € I}, families of nonnegative weights {a; : i € T} and
{Bi 1 i € I} such that

(L.7) v =t + ) aid,
€T
k/2,,12
i€l

where 6, denotes the Dirac measure concentrated at x € M with mass
equal to 1 .
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(ii) In addition we have for alli € T
:
(1.9) a7/ < Ko(n, k) 6;

. 2/2%
In particular Y a;’ ™ < 0.
ieT
3
(iii) Furthermore, if u=0 and V(M)2/2k > Ko(n, k) (M), then v is concen-
trated at a single point.

Another consequence of A(M) = Ky(n,k) is the existence of minimum energy
solutions to (1.2) when the functional Jp goes below a quantified threshold (see
Theorem 1.3 below). In general the conformal covariance of the geometric operator
P, yields obstruction to the existence of solutions to (1.2). In particular, it follows
from [12] that on the canonical sphere (S™,can), there is no positive solution u €
C>(S™) to the equation Pegnu = (14 egp)u%_l , for all € # 0 and all first spherical
harmonic ¢.

We remark that any weak solution to equation (1.2) is infact a classical solution.
The proof (Mazumdar [37], see Chapter 2) is based on the ideas developed by Van
der Vorst [49]. Concerning the existence of weak solutions to equation (1.2) we first
look for minimizers of the functional Jp. The result we obtain in this direction (in
the spirit of Aubin) is

Theorem 1.3. (Mazumdar [37], see Chapter 2) Let (M, g) be a compact Rie-
mannian manifold of dimensionn > 2k, with k > 1. Let P be a differential operator
as in (1.3) and let f € C%%(M) be a Hélder continuous positive function. Assume
that P is coercive on HI%,O(M)‘ Suppose that

ulel}\fff /M uP(u) dvg <

where

Nj:={ue HZ(M): /f|u|2§f dvg, =1}
M

Then there exists a minimizer uw € Ny. Moreover, up to multiplication by a constant
u € C?*(M) is a solution to

Pu= fuz,{—1 imn M.

In addition, if the Green’s function of P on M with Dirichlet boundary condition
is positive, then upto changing sign u > 0 is a classical solution to

Pu = fuzi'r_1 in M.

In a remarkable result first Coron [11], and then Bahri-Coron [5] showed that the
topology of the domain plays a role in proving the existence of solutions to equations
like (1.11) when k£ = 1. Coron [11] showed that the equation

n+2 .
Au = unr—2 in Q

u>0 in Q
u=20 on Of)
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always admits a solution if the bounded smooth domain Q@ C R", n > 3, has
a sufficiently small hole. Here A = —3".0;; is the Laplacian with minus sign
convention. The idea of the proof is to argue by contradiction and to use a minimax
method for the corresponding energy functional J, based on a set T of non-negative
functions which are homeomorphic to the (n — 1) dimensional sphere ¥ around a
point in Q. The set T is contractible in the positive cone in Hf(€2). So if the
above equation does not admit a solution, then under certain conditions such a
contraction of T' in H7 ;(€2) will induce a contraction of ¥ in Q, giving the desired
contradiction.

Infact Bahri-Coron [5] showed that the effect of topology is much stronger,
and extended the Coron’s result for the case when  has a non-trivial topol-
ogy(homology). We note that the solutions obtained by these topological methods
are in general not a minimiser of the corresponding energy functional Jp. The
result of Coron [11] has been generalised for the polyharmonic case by Ge and al.
[20], and Weth and al. [6] for domains in R™. The next theorem proved in [37] is
in this spirit:

Theorem 1.4. (Mazumdar [37], see Chapter 2) Let (M, g) be a smooth, com-
pact Riemannian manifold of dimension n and let k be a positive integer such that
2k < n. Welet P be a coercive operator as in (1.3). Let vy > 0 be the injectivity ra-
dius of the manifold M. Suppose that the manifold M contains a point xy such that
the embedded (n—1) dimensional sphere Sy (14/2) == {x € M/d4(x,z0) = 14/2} is

not contractible in M\{xo}. Then there exists eg € (0,%) such that the equation

#_ .
(1.10) Pu=[u*?u  inQy
D=0 on Oy for o <k-1
has a non-trivial C?*(Qr) solution for Qar := M\ By, (e0). Moreover, if the Green’s
Kernel of P on Qy is positive, then we can choose u > 0.

In the original result of Coron [11] and its subsequent generalisations by Ge and
al. [20], and Weth and al. [6] (for k£ > 1) the authors work with a smooth domain
in R™ and assume that it has a small “hole”. In the context of a compact manifold,
this assumption is not enough: indeed, the entire compact manifold minus a small
hole might retract to a point. In section 7 of Chapter 2, we show that, in the case
of the canonical sphere the existence of a hole is not sufficient to get solutions to
equation (1.11), showing that the hypothesis of Theorem 1.4 is necessary.

One can also let (M, g) to be a smooth, compact Riemannian manifold of dimension
n with boundary. By this we understand that M is a compact, oriented submanifold
of (M ,g) which is itself a smooth, compact Riemannian manifold without boundary
and with the same metric g and dimension n. As one checks, this includes smooth
bounded domains of R™. When the boundary OM # (), we let v be its outward
oriented normal vector in M. Then in addition to equation (1.2) one can also
consider the following general boundary value problem on M

(1.11) Pu=fluf*?u M
oou=0 on OM for |o] <k-—1.

where f € C%%(M) is a Holder continuous function.
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The Hilbert space H £7O(M ) is similarly defined as the completion of the space
C° (M) with respect to the norm ||- ”?1,3 as defined earlier. We say that u € H,f’o(M)
is a weak solution of equation (1.11) if

k—1
/ A2, AR dug + 3 / A(V'uV'p) dvg = / Pt up v,
M 1=0 /M M

for all ¢ € H,iO(M). The functional Jp is well defined on H,iO(M) \ {0} and
its critical points corresponds to weak solutions of (1.11). Any weak solution to
equation (1.11) is again a classical solution(see Chapter 2: Regularity) .

One can also consider the free functional

1 1
Ip(u):= g/uP(u) dvg — o / \u|2£ dv,
M k

on H,aO(M). Critical points u € H,io (M) of Ip are again weak solutions to equation
(1.11).

Definition 1.0.1. Let (X, ||-]|) be a Banach space and F € C*(X). A sequence
(um) in X is said to be a Palais-Smale sequence for F if (F(um))m has a limit in
R when m — 400, while DF(u.;,) — 0 strongly in X' as m — +oc0.

In [38] we describe the lack of relative compactness of Palais-Smale sequences for

Ip, which is due to the noncompact embedding H,f,o(M) < L% (M). We obtain
a characterization of the Palais-Smale sequences for Ip as a sum of bubbles plus a
critical point of Ip (which can be trivial), a result in the spirit of Struwe’s celebrated
1984 result. We consider Riemannian manifolds with or without boundary. The
main idea is that often a non-convergent Palais-Smale sequence (u,,) or a blown
up version of it splits up into a piece that converges weakly to a solution of the
original problem ug and another one that converges to solutions of a closely related
limiting problem. This is a very powerful result which is often used to show the
existence of solutions to a variational problem.

In our case, because of the higher order of the polyharmonic operator, unlike
the classical case of the Laplace operator (k = 1), in general there might be bubbles
approaching the boundary of the domain, and this generates special type of bubbles
which are solutions to the rescaled equation in the half space.

For © any open domain of R™, we let D?(Q) be the completion of C2°(£2) for the
norm u — ||A*/24|5. The limiting equations of (1.11) are

(1.12) Afy = |u|2i—2 uin R", u € DE(R™)
k. 2f _2 . n
(1.13) Atu=lul™ Tu i RL A e p2 (e
OSu=20 on OR"

where A := Ap, is the Laplacian on R™ (with the minus sign convention) endowed
with the Euclidean metric Eucl. Associated to the functional Ip is the limiting
functional

1

1
E(u) := 5/ (A*/24)? do — 27/ |u|21uc dx for all u € DZ(R™).
n ¢ Jen



8 1. INTRODUCTION

The full HZ—decomposition of the Palais-Smale sequences for the functional Ip is
given by the following theorem

Theorem 1.5. (Mazumdar [38], see Chapter 3) Let (u,,) be a Palais-Smale
sequence for the functional Ip on the space H,fyo(M). Then there exists d € N

bubbles [(x%)),(r%)),u(j)], J = 1,...d, there exists uo, € Hf (M) a solution to
(1.11) such that, up to a subsequence,

d
U, = Uso + ; Bwﬁi),rii) (u(j)) + o(1) where mlirfrlm o(1) =0 in H,fjo(M)
and
d
Ip(um) = Ip(us —|—Z E(u (7) o(1) as m — +o0.
j=1

for definition of bubbles see: section 2 of Chapter 3. As one checks, for any non-
trivial weak solution u € D7 (R™) of (1.12) or (1.13)

(1.14) E(u) > g = %Ko(n,k)’"/%

When the Palais-Smale sequence is nonnegative, the bubbles are indeed positive
and correspond to positive solutions of (1.12). We then have:

Theorem 1.6. (Mazumdar [38], see Chapter 3) Let (u,) be a Palais-Smale
sequence for the functional I,, on the space H,fo(M) We assume that w,, > 0 for
allm € N. Then there exists us € H,f,O(M) a solution to (1.11), there exists d € N
sequences ¢ (of7). ..., (1) € M, (), (%) € (0.00) sueh that rf) 0
and r(j) o(d (mm ,OM)) as m — +oo for all j =1,...,d, and up to a subsequence,

n—2k

T('j)
—Uoo+z ( (J) Lep™, Re )()> Qp ke < . (])) > +0(1)

()2 + dy (-

where limy, o0 0(1) = 0 in H}, o(M), and n is a smooth cut-off function and 79 s
are such that for all j=1,....d

d, (), OM)

. 7"(73; o ~j
lim = = 0 and 7!, < 5
T

a——+o00 2

Moreover,
Ip(tm) = I(uso) +dB* +o(1)  asm — 400
where B* is as in (1.14).

When k£ =1 and M is a smooth bounded domain of R™, Theorem 1.5 is the pio-
neering result of Struwe [46]. There have been several extensions. Without being
exhaustive, we refer to Hebey-Robert [33] for k£ = 2 and manifolds without bound-
ary, Saintier [45] for the p—Laplace operator, El-Hamidi-Vétois [29] for anisotropic
operators and Almaraz [2] for nonlinear boundary conditions. When the manifold is
the entire flat space R™, the decomposition is in the monograph by Fieseler-Tintarev
[48].
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Palais-Smale sequence are produced via critical point techniques, like the Mountain-
Pass Lemma of Ambrosetti-Rabinowitz [3] or other topological methods (see for
instance the monograph Ghoussoub [21] and the references therein).

For general higher-order problems, we also refer to Bartsch-Weth-Willem [6], Pucci-
Serrin [41], Ge-Wei-Zhou [20], the general monograph Gazzola-Grunau-Sweers [19]
and the references therein.

These works are the object of my following two papers (submitted)
[37] GJMS-type Operators on a compact Riemannian manifold: Best constants
and Coron-type solutions. See Chapter 2 of this memoir.
[38] Struwe’s decomposition for a Polyharmonic Operator on a compact Rie-
mannian manifold with or without boundary. See Chapter 3 of this mem-
oir.

Part 2

Let 2 be a bounded smooth oriented domain of R™, n > 3, such that 0 € 92. We
define the Sobolev space H () as the completion of the space C2°(€), the space
of compactly supported smooth functions in 2, with respect to the norm

i o = [ VP do
Q

We let 2* := 2% be the critical Sobolev exponent for the embeding HE () <
LP(Q2). Namely, the embedding is defined and continuous for 1 < p < 2*, and it is
compact iff 1 < p < 2*. Let a € C'(Q) be such that the operator A + a is coercive
in , that is, there exists a constant Ag > 0 such that for all p € H{ ()

(1.15) /(|Vg@\2+ag02) dx > Ao/gpz dx
Q Q

Solutions u € C%(9) to the problem

Au+a(z)u=u>""1 inQ
(1.16) u>0 in
u=0 on Jf2

(often referred to as ”Brezis-Nirenberg problem”) are critical points of the func-

tional
J(IVul* + au? ) dz
)

2/2°
<f|u 2 dx)
)

and a natural way to obtain such critical points is to find minimizers to this func-
tional, that is to prove that

U —

)

[ (IVu]? + au? ) dx
)

2/2%
J ul? dx)
)

is achieved. There is a huge and extensive litterature on this problem, starting
with the pioneering article of Brezis-Nirenberg [10] in which the authors completely

(1.17) a(2) =

inf
u€H? ,(2)\{0} (
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solved the question of existence of minimizers for p,(2) when a is a constant and
n > 4 for any domain, and n = 3 for a ball. Their analysis took inspiration from
the contributions of Aubin [4] in the resolution of the Yamabe problem. The case
when a is arbitrary and n = 3 was solved by Druet [13] using blowup analysis.

In [25] and [24], Ghoussoub-Yuan and Ghoussoub-Kang suggested to approach the
minimisation problem by adding a singularity in the equation as follows. For any
s € [0,2), we define
2(n—s)

n—2
so that 2* = 2*(0). Weak solutions u € H ((22)\{0} to the problem

92*(s) 1=

u2*(s)—1

Au+ a(x)u = F in Q
u>0 in
u=0 on 0.

Note here that 0 € 9Q is a boundary point. Such solutions can be achieved as
minimizers for the problem

J(IVul* + au? ) dz
Q

inf ;
u€H? ((2)\{0} ]2 ) 2/2%(s)
f dx

ER

(1.18) s o () = for s € (0,2)

Consider a sequence of positive real numbers (s.)eso such that liH(l) se = 0. We let
e—

(ue)eso € C? (Q\{0}) NC* () such that

W2 -1

Au, + au, = T in Q,
(1.19) ue > 0 in Q,
ue =0 on If).

Moreover, we assume that the (u.)’s are of minimal energy type in the sense that

J([Vuel* +au? ) da
o)

u, [2* (s0)
<f e 4%
Q

as € — 0, where K(n,0) > 0 is the best constant in the Sobolev embedding which
can be characterised as

(1.20)

1)

>2/2*(s€) = ps.,a()) < (n,0) +o(

[ |Vul? d
1 R'Vl

1.21 = inf
(121) K(n,0)  uez 3\ (o) 2/2
( [ ul? da:)
R’ﬂ

Indeed, it follows from Ghoussoub-Robert [22,23] that such a family (u.). exists if
the the mean curvature of 90 at 0 is negative.

The lack of compactness of the critical Sobolev embeddings potentially generates a
noncompactness of families of solutions to equations like (1.16). When a family is
not relatively compact, we say that it is a blow up sequence. In the past years, there
has been a considerable abundance of descriptions of blowing-up sequence, starting
with the description in the sense of measures by Lions [36] and the description of
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Palais-Smale sequence by Struwe [46] that we have discussed in the first part of
this memoir. Other classical references for the blow-up analysis of nonlinear critical
elliptic pdes are Rey [42], Adimurthi- Pacella-Yadava [1], Druet-Robert-Wei [15],
Han [30], Hebey-Vaugon [34] and Khuri-Marques-Schoen [35]. In particular, for
sequences of solutions, the optimal pointwise control of blow up is in Druet-Hebey-
Robert [14]. The analysis of the 3D problem by Druet [13] and the monograph
[14] by Druet-Hebey-Robert were important sources of inspiration.

Here, we are interested in studying the asymptotic behavior of the sequence (u)e>0
as € — 0. As proved in Proposition 3.2 of [39], if the weak limit ug of (u.)e in
H? ,(Q) is nontrivial, then the convergence is indeed strong and ug is a minimizer
of 114(Q). In the spirit of the C°—theory of Druet-Hebey-Robert [14], our first
result is the following:

Theorem 1.7. (Mazumdar [39], see Chapter 4) Let Q be a bounded smooth
oriented domain of R™, n > 3 , such that 0 € 9Q, and let a € C*(Q) be such that
the operator A + a is coercive in Q. Let (S¢)eso € (0,2) be a sequence such that
hné se = 0. Suppose that the sequence (uc),, € Hi o(2), where for each € >0, u,

satisfies (1.19) and (1.20), s a blowup sequence, i.e
ue — 0 weakly in HIQ’O(Q) as € =0

We rescale and define

Ue(ze + ke) — T
Ve(x) = ———————— forxz e
(z) Ue(xe) ke
where
= fod

and

_n=2

pe 2 =uc(xe) = I;leaglcue(x)-

Then there exists v € C°(R™) such that v # 0 and for any n € C°(R™)
NV — NU weakly in HZ(R™) ase—0
and
Ve — 0 in CL(R™) as € =0
Further v(0) = 1 and it satisfies the equation
{ Av =¥ 1 in R™
v>0 in R™

Next we obtain strong pointwise control

Theorem 1.8. (Mazumdar [39], see Chapter 4) Let Q be a bounded smooth
oriented domain of R™, n >3 , such that 0 € 99, and let a € C1(Q) be such that
the operator A + a is coercive in Q. Let (s¢)eso € (0,2) be a sequence such that
hrr(l) se = 0. Suppose that the sequence (uc) .o € Hf o(2), where for each € > 0, u,

satisfies (1.19) and (1.20), is a blowup sequence, i.e
ue —0 weakly in HY () as € =0
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Then, there exists C' > 0 such that for all e > 0

n—2

He
UE(J;) S C <ME—|—|J}—{L’62> fO'I” all x € Q

where

He =uc(z) = r;léié(ue(l‘)
Theorem 1.8 asserts that the pointwise control is the same as the control of the
classical problem with s, = 0: however, to prove this result, we need to perform a
very delicate analysis of the blowup with the perturbation s, > 0.

With this optimal pointwise control, we are able to obtain more informations on
the localization of the blowup point xg := lim._gz. and the blowup parameter
(fte)e- Welet G*: Q x Q\ {(z,2) : * € Q} — R is the Green’s function of the
coercive operator A + a in  with Dirichlet boundary conditions. For any x € Q
we write G2 as:

1

Galy) = TR + 95 (y)

where wy,_1 is the area of the (n — 1)- sphere. In dimension n = 3 or when a = 0,
one has that g¢ € C%(Q\ {z}) N C%%(Q) for some 0 < § < 1, and g° is called
the regular part of the Green’s function G*. In particular, when n = 3 or a = 0,
mg (2, a) = ¢g%(x) is defined for all x € Q and is called the mass of the operator
A+ a.

Theorem 1.9. (Mazumdar [39], see Chapter 4) Let Q be a bounded smooth
oriented domain of R™, n > 3 , such that 0 € 99, and let a € C1(Q) be such that
the operator A + a is coercive in Q. Let (S¢)eso € (0,2) be a sequence such that
lii% sc = 0. Suppose that the sequence (uc) o € Hf o(Q), where for each € > 0, u,

satisfies (1.19) and (1.20), is a blowup sequence, i.e
ue = 0 weakly in H12,0(Q) as €—0

We let (pie)e € (0,+00) and (x)e € Q be such that

_n=2
fe 2 =uc(x) = Iwneaéiue(x)

We define xg := lim¢_q x..

Suppose
xo € Q is an interior point.

Then

Se ) _or
. Se 2" S
lm% 2z 2*K(n,0)7-2d,, a(zo) for n>5

1 76 = 2 =
lgr(l) 1 ZTog (/1) 256w3 K (4,0)° a(xo) for n=4

= —nb2K(n, O)”/Qg;O (zo0) forn =3 ora=0.

. €
lim 5
e—0 'u?_
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where g3 (xo) the mass at the point xo € Q for the operator A + a,

1 1
dnz/ — dz forn25;bn=/ — dT
z|? 2|2 2
R™ (1 + n(‘n‘—2)) R™ (1 + n(|n‘_2)) ’

and ws is the area of the 3- sphere.
Suppose if
lim z, = zo € 09.
e—0
Whenn =3 ora=0, then as e — 0
- sed(xe,0Q)"2 " (n — 2)" 1K (n,0)" ?w,_,

li
e—0 ‘u?_Q 2n72

Moreover, d(z¢,0Q) = (1 + o(1))|zc| as € = 0. In particular xo = 0.

Indeed, we also tackle the general case n > 4 or a # 0. The detailed results are in
Theorems 4.3 and 4.10 of Chapter 4.

The main difficulty in our analysis is due to the natural singularity at 0 € 9.
Indeed, there is a balance between two facts. First, since s, > 0, this singularity
exists and has an influence on the analysis, and in particular on the Pohozaev
identity (for details see the statement of Theorem 1.9 above). But, second, since
se — 0, the singularity should cancel, at least asymptotically. In this perspective,
our results are twofolds.

The influence and the role of s, > 0 is much more striking. Compared to the
case s = 0, there is an additional term in the Pohozaev identity involving s..
Heuristically, this is due to the fact that the limiting equation Au = |x|~5u2 ()1
is not invariant under the action of the translations when s > 0.

This part is the subject of my work:

[39] Blow-up Analysis For a Sequence of Solutions of The Critical Hardy-
Sobolev Equations. See Chapter 4 of this memoir.

Regarding notation, we tried to make it as much unified as possible. Nevertheless,
the main specific notation will be introduced chapter by chapter.
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Part 1

Polyharmonic operators on
Riemannian manifolds






CHAPTER 2

GJMS-type Operators on a compact Riemannian
manifold: Best constants and Coron-type solutions

ABSTRACT. In this chapter we investigate the existence of solutions to a non-
linear elliptic problem involving critical Sobolev exponent for a polyharmomic
operator on a Riemannian manifold M. We first show that the best constant
of the Sobolev embedding on a manifold can be chosen as close as one wants
to the Euclidean one, and as a consequence derive the existence of minimizers
when the energy functional goes below a quantified threshold. Next, higher en-
ergy solutions are obtained by Coron’s topological method, provided that the
minimizing solution does not exist. To perform this topological argument, we
overcome the difficulty of dealing with polyharmonic operators on a Riemann-
ian manifold and adapting Lions’s concentration-compactness lemma. Unlike
Coron’s original argument for a bounded domain in R™, we need to do more
than chopping out a small ball from the manifold M. Indeed, our topological
assumption that a small sphere on M centred at a point p € M does not re-
tract to a point in M\{p} is necessary, as shown for the case of the canonical
sphere where chopping out a small ball is not enough.

2.1. Introduction

Let M be a compact manifold of dimension n > 3 without boundary. Let k be
a positive integer such that 2k < n. Taking inspiration from the construction of
the ambient metric of Fefferman-Graham [15] (see [16] for an extended analysis of
the ambient metric), Graham-Jenne-Mason-Sparling [19] have defined a family of
conformally invariant operators defined for any Riemannian metric. More precisely,
for any Riemannian metric g on M, there exists a local differential operator Py :
C>(M) — C°°(M) such that P, = A% +lot where A, := —div,(V), and, given
u € C*°(M) and defining § = uﬁg, we have that

(2.1) Py(p) = u~ w2k Py (up) for all o € C*°(M).

Moreover, P, is self-adjoint with respect to the L?—scalar product. A scalar in-
variant is associated to this operator, namely the ()—curvature, denoted as @, €
C*>(M). When k =1, P, is the conformal Laplacian and the Q—curvature is the
scalar curvature multiplied by a constant. When k = 2, P, is the Paneitz operator
introduced in [29]. The @—curvature was introduced by Branson and @rsted [10].
The definition of @, was then generalized by Branson [8,9]. In the specific case

n > 2k, we have that Qg := —2_P,(1). Then, taking ¢ = 1 in (2.1), we get that

Pyu = ”_22]“ qu::tii on M. Therefore, prescribing the Q—curvature in a conformal
class amounts to solving a nonlinear elliptic partial differential equation(PDE )of

2k order. Results for the prescription of the Q—curvature problem for the Paneitz

21
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operator (namely k = 2) are in Djadli-Hebey-Ledoux [13], Robert [31], Esposito-
Robert [14]. Recently, Gursky-Malchiodi [20] proved the existence of a metric with
constant @Q—curvature (still for k& = 2) provided certain geometric hypotheses on
the manifold (M, g) holds. These hypotheses have been simplified by Hang-Yang
[21] (see the lecture notes [22])

In the present chapter, we are interested in a generalization of the prescription of
the @—curvature problem. Namely, given f € C°° (M), we investigate the existence
of u € C*°(M), u > 0, such that

(2.2) Pu = fu2i_1 in M,
where Zﬂk = 2% and P : C®(M) — C*>(M) is a smooth self-adjoint 2k'" order
partial differential operator defined by
k—1
(23) Pu = Agu + Z(—l)lvjl’"']l (Al(g),-l_,,il,jl_“le“'””u)
1=0
where the indices are raised via the musical isomorphism and for all I € {0,...,k—

1}, Ai(g) is a smooth symmetric T9-tensor field on M (that is: A4;(g)(X,Y) =
Ai(g)(Y, X) for all Ti-tensors X,Y on M). When P := P,, then (2.2) is equivalent

to say that Qy = ﬁf with § = uﬁg.

The conformal invariance (2.1) of the geometric operator P, yields obstruction
to the existence of solutions to (2.2). The historical reference here is Kazdan-
Warner [25]; for the general GIMS operators, we refer to Delanoé-Robert [12].
In particular, it follows from [12] that on the canonical sphere (S™,can), there is
no positive solution u € C®(S") to Peanu = (1 + ep)ut~1 for all € # 0 and all
first spherical harmonic . For the conformal Laplacian (that is & = 1), Aubin
[3] proved that the existence of solutions is guaranteed if a functional goes below
a specific threshold. We generalize this result for any & > 1 in Theorem 2.3. In
the case of a smooth bounded domain, Coron [11] introduced a variational method
based on topological arguments, provided the minimizing solution does not exist.
Our main theorem is in this spirit:

Theorem 2.1. Let (M,g) be a smooth, compact Riemannian manifold of di-
mension n and let k be a positive integer such that 2k < n. We let P be a coercive
operator as in (2.3). Let vy > 0 be the injectivity radius of the manifold M. Sup-
pose that the manifold M contains a point xo such that the embedded (n — 1)—
dimensional sphere Sy, (tq/2) = {x € M/ d4(z,z0) = t4/2} is not contractible in

M\{zo}. Then there exists e € (0, %) such that the equation

(2.4) Pu=[uf*u i Qu
Deu =0 on Oy for o <k-1

has a non-trivial C?*(Qyr) solution for Qpr := M\ By, (e0). Moreover, if the Green’s
Kernel of P on Qy is positive, then we can choose u > 0.

In the original result of Coron [11] (see also Weth and al. [6] for the case
k = 2), the authors work with a smooth domain of R™ and assume that it has a
small “hole”. In the context of a compact manifold, this assumption is not enough:
indeed, the entire compact manifold minus a small hole might retract on a point.
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We discuss the example of the canonical sphere in Section 2.7, where the existence
of a hole is not sufficient to get solutions to (2.2).

Concerning higher-order problems, we refer to Bartsch-Weth-Willem [6], Pucci-
Serrin [30], Ge-Wei-Zhou [18], the general monograph Gazzola-Grunau-Sweers [17]
and the references therein.

Among other tools, the proof of Theorem 2.1 uses a Lions-type Concentration
Compactness Lemma adapted to the context of a Riemannian manifold: this will
be the object of Theorem 2.4.

Equation (2.2) has a variational structure. Since P is self-adjoint in L?, we have
that for all u,v € C*°(M).

(2.5)

k—1
/uP(v) dvg = /vP(u) dvg = /A’;/2UA’;/QU dvg + Z/Al(g)(vlu,vlv) duy
M M M 1=0 jis
where
A2y Al'u if [ = 2m is even
g VAZw ifl=2m+1is odd
and, when [ = 2m + 1 is odd, A§/2u A];/Qv = (VA;"mVA;”v)q. If P is coercive
and f > 0, then, up to multiplying by a constant, any solution u € C>*(M) to (2.2)
is a critical point of the functional
J uP(u)dvg
(2.6) ws Jp(u) = —H

2/2%
1
(ff|u|2k dvg)
M

It follows from (2.5) that Jp makes sense in the Sobolev spaces HZ(M), where
for 1 <1 < k, H?(M) which is the completion of C°°(M) with respect to the
U ZL:O |Veul|2. Equivalently (see Robert [32]), H?(M) is also the completion
of the space C*° (M) with respect to the norm

1
2.7) fully =Y [ a5/ o,

a=0M

By the Sobolev embedding theorem we get a continuous but not compact embedding
of H2(M) into L% (M). The continuity of the embedding H7 (M) — L% (M) yields
a pair of real numbers A, B such that for all u € H? (M)

2 2
(2.8) Jull2y < 4 [ Q420 vy + Bl
M

See for example Aubin [4] or Hebey [23]. Following the terminology introduced by
Hebey, we then define

(2.9)
A(M) :=inf{A € R: 3 B € R with the property that inequality (2.8) holds}



24 2. POLYHARMONIC OPERATORS ON A COMPACT RIEMANNIAN MANIFOLD

As for the classical case k = 1 (see Aubin [4]), the value of A(M) depends only
on k and the dimension k. More precisely, we let 2%2(R™) be the completion of
C>(R™) for the norm u — ||A¥/2u]|y, and we define Ko(n, k) > 0
1 (AF/24)2 4
210 T = wean ey 2
n u ’ " of
o\n, S (R™)\{0} (fR" |u‘2i da:) zﬁk

as the best constant in the Sobolev’s continuous embedding Z%2(R") < L% (R™).
Our second result is the following:

Theorem 2.2. Let (M,g) be a smooth, compact Riemannian manifold of di-
mension n and let k be a positive integer such that 2k < n. Then AM) =
Ko(n,k) > 0. In particular, for any € > 0, there exists B, € R such that for
all w € HZ (M) one has

2%
(2.11) (/ |u|2i dvg> P < (Ko(n, k) —|—e)/(A§/2u)2 dvg + B ||UH§{;€
M -1
M

As a consequence of this result, we will be able to prove the existence of solutions
to (2.2) when the functional Jp goes below a quantified threshold, see Theorem 2.3.

This chapter is organized as follows. In Section 2.2, we study the best-constant
problem and prove Theorem 2.2. In Section 2.3, we prove Theorem 2.3 by classical
minimizing method. In Section 2.4, we prove a Concentration-Compactness Lemma
in the spirit of Lions. Section 2.5 is devoted to test-functions estimates and the
proof of the existence of solutions to (2.4) via a Coron-type topological method.
Section 2.6 deals with positive solutions, and Section 2.7 with the necessity of the
topological assumption of Theorem 2.1. The appendices concern regularity and a
general comparison between geometric norms.

Acknowledgements. I would like to express my deep gratitude to Professor
Frédéric Robert and Professor Dong Ye, my thesis supervisors, for their patient
guidance, enthusiastic encouragement and useful critiques of this work.

2.2. The Best Constant

It follows from Lions [26] and Swanson [34] that the extremal functions for the
Sobolev inequality (2.10) exist and are exactly multiples of the functions

n—2k

A
2.12 Uir=amp | — 2 R" A >0
( ) A= Q ’k(1+)\2|x—a|2> ac >

where the choice of o, 1’s are such that for all A, [|Ug|lyx = 1 and HUa’)\HQ@M =
k

#_
m. They satisfies the equation A*y = m \u|2’~' >4 in R™
Next we consider the case of a compact Riemmanian manifold. The first result we

have in this direction is the following.

Lemma 2.2.1. Let (M,g) be a smooth, compact Riemannian manifold of di-
mension n and let k be a positve integer such that 2k < n. Any constant A in
inequality (2.8) has to be greater than or equal to Ko(n, k), whatever the constant
B be.
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Proof of Lemma 2.2.1: We fix € > 0 small. It follows from Lemma (2.9.1) that there
exists, dp € (0,¢y) depending only on (M, g), €, where ¢, is the injectivity radius of
M, such that for any point p € M, any 0 < 6 < dg, I < k and u € C°(By(9))

(2.13) /(A;/Q(uo exp;l)) dvg < (1+¢) /(Al/2u)2 dx
M R»
and
2/2} 2/2%
(2.14) (1—e) /Iu\”@ da < /\uoexp;w?i dv,
Bn

Then plugging the above inequalities into (2.8) we obtain that any u € C° (By())
satisfies
2/28

k—1
(2.15) /\u|2i dr| < 1“;1/(&@%)2 derC’EZ/ Vlu|? da
/| —o R™

— €
RTL

Let v € C° (R™) with supp(v) C Bo(Rp). For A > 1 let vy = v(Az). Then for A
large, supp(vy) C Bo(d). Taking u = vy in (2.15), a change of variable yields

(2.16)
2/2%

* k-1
1 / o l+e A k)2, 12 1 L
n—2k |U‘ +dx < ¢ \n—2k /(A 1)) dx+c€§ : n*2l/ | U| dx
A 1—€e X —~ Y -

R Rn

Multiplying by A"~2* and letting A — 400, we get that for all v € Z%2(R"), we
have

2/2}
1
(2.17) /|U|2i dx < 1+€A/(Ak/2v)2 dx
—€
R™ R™
Therefore 1£€4 > Ko(n, k) for all € > 0, and letting € — 0 yields A > Ko(n, k).
This ends the proof of Lemma 2.2.1. o

We now prove (2.11) to get Theorem 2.2.

Step 1: A local inequality. From a result of Anderson (Main lemma 2.2 of [2])
it follows that for any point p € M there exists a harmonic coordinate chart ¢
around p. Then from Lemma 2.9.1, for any 0 < ¢ < 1, there exists 7 > 0 small
enough such that for any point p € M and for any u € C¢° (B,(7)), one has

(2.18) /(Am(u op )2 dr < (1 + m) /(A’;/Qu)Q dvy
M

RTL
and
2/2} 2/2}

(2.19) /Wﬁ dvg < (1 3K ) /|uogp 12 dy
O
M
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The expression for the Laplacian A, in the harmonic coordinates is Aqu = —g;;0;;u.
Then (2.10) implies that for any u € C° (B,(7))

2/2}

(2.20) / u|2k du, < (Ko(n, k) + ¢) / (AF20)? du,
M M

Step 2: Finite covering and proof of the global inequality. Since M is
compact, it can be covered by a finite number of balls B, (7/2), i =1,...,N. Let
a; € C°(By, (7)) be such that 0 < a; <1 and a; = 1 in By, (7/2). We set

7

2
a;

N
> o
j=1

(2.21) n =

Then (7;),—, _y is a partition of unity subordinate to the cover (By,(7)),_;  x

N

such that ,/7;’s are smooth and ) 7; = 1. In the sequel, C' denote any positive
i=1

constant depending on k,n, the metric g on M and the functions (;) i=1... N Now

for any u € C°°(M), we have

2 2 _
(222) [l = ]z, =

N

2
E Tt
i=1

N N
<D llmiwllys o = D IN/sulla:
=1

Qi/Q =1

So for any u € C°°(M), using inequality (2.20) we obtain that
2/2} N
(2.23) /|u|2i o, | <Kok +9S) /(A’;/Q( 7iw))2 do,
M =1y
Next we claim that there exists C' > 0 such that

N
@20 S [(@EA? oy < [ vy Clully

=1 M

Assuming that (2.24) holds we have from (2.23)
(2.25)

#
2/2%

/|u|2i do,| < (Ko(n, k) +e) /(A’;/?u)g dvg + (Ko(n, k) + OC [ul%e
M M
this proves (2.11), and therefore, with Lemma 2.2.1, this proves Theorem 2.8. We

are now left with proving (2.24).

Step 3: Proof of (2.24): For any positive integer m, one can write that

m o m 2m—1,1 2m—2
(2.26) A fiu) = /i A + P N(u, /i) + L2702 (u)
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where
(2.27)
2m—2
7)£(I2m71,1)(u7 \/E) — Z (al,586ﬁ>v u, and E?/TT;( ) z al(m) Viu
l|=2m—1,=1 I1=0

the coefficients a; 5 and a;(,/7;) are smooth functions on M. The a;’s depends
only on the metric g and on the manifold M and a;(y/7;)’s depends both on the
metric g, the function /7; and its derivatives upto order 2m. We shall use the same

notations Pézm*l’l)(u, NGDB E%__j (u) for any expression of the above form.

Step 3.1: k is even. We then write k = 2m, m > 1, and then

N

Z/(A(mu dvg = Z/mAu dvg,

11]\/[ le

"'Z/ ,P(Qm L) (u, /7) dvg—&-Z/ 5%; dvg
+2Z/ \/EA;nU P;2m71’1)( \/m dvngQZ/ \/mAm £2m 2( )dUg
i=17/M

N
(2.28}}—22/1\/1 PEMED (u, /;) L%j( u) dvy
i=1

We note that
(2 29)

2
> [ (e ym) <Ol wma 3 [ (€2) < i

On the other hand

N
S [ i =Y Y Y [ (AT anstsmvh i

i=1 |l|=2m—1|8|=1

- %Z > X /M(Agnu)((al,ﬁaﬂm)vl“) dvg

i=1 |i|=2m—1|8|=1

Z Z/ Au alﬁagzm Vu ) dvg =0

2 iiZ2m1 5121
(2.30)

while using the integration by parts formula we obtain

m—1

N
(2.31) 3 /M VAT £27=2 () dvy < O flul%
=1
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and by Holder inequality

1

N
@3 3 [ PO i) L2 doy < Ol
=1

Hence if k is even, then

N
m 2 m 2
(2.33) Z/ (A7 (Vmiw))™ dog < / (Au)” dvg +C ||u|ﬁq§m_1
=1y M
So we have the claim for k even.

Step 3.2: k is odd. We then write k£ = 2m + 1 with m > 0. We have
(2.34)
V(AR (V) = Vi Y (Ag) + (Agu) Vi + Y (PE D (i) )+ (£252(w)

and so

(2.35)

N ) N ) N

> (19 apem) P e, =3 ]9 @) o+ 3 Ao 19y i,
i=1 M ’L:lM i:lM

o5 [l G e m)f s[5 ()] o
=1, =1y

N N
+2Z/(\/a V(A7) (A7) Vi) dug + 22/(\@ v (agu),  (PE D w, i))) dvg

’L;lM i:]i]\/[
+ QZ/(\/@ V(A7) V(L2 2w)) du + 22/(%;’%) ViV (P10 (u, /i) )) do,
(2.36) N Y
N N
+ 22/((A;”u) Vi,V (ﬁ%jj(u))) dvg + 22/(V ('Pé?m—l,l)(u, m)) v (53/7:{;(“))) dv,
=1y =13

We have that
(2.37)

N 9 N 2
S |7 (P vim)| vy < Cllully, and S [ |9 ()] doy < Clull,
=1 i=13,
while
N N
S [ (AF0) (Apa) V) doy = 3 [ (9 (A7) (5) (Vi TV do
=1y =1y,

(2.38)

=53 [V (85w (Ayw V) oy, =5 [(7 (A7) (A7 V() duy =0

=1y M
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And we obtain

N
> / VIV (8510) 9 (PP, i) dy

= Z Z Z / Vi V(A7) Y ((a1,305/ni) V') dog

i=1 |l|=2m—18]=1};

IN

Z > > / Vit V (A7) | (a1,505/1) V') dug

=1 |l|=2m |B|=1,s

Z > Z/ (/7T V{an,505 /1)) V') dv,

=1 |l|=2m—1|8|=1,

Z Z Z/\/EV (A7 u) , (a1,505/ni) V') du,

i=1 |1|=2m |B|=1}

N
(239)  +> ] > > /(V(Ayu),(@V(al,ﬁaﬁm))vlu) dv,

i=1 ||l|=2m~—1 1B1=1p," ()

Then we apply the integration by parts formula on each of the domains ¢~ (By, (1)) C
R™ to obtain

Z Z Z / (Vi V (Au) (a1,505/Mi) V') du,

=1 [l|=2m |B|=1,

N
31X X[ (T Vawsdsyi) V) do,

i=1 |l1=2m—181=15 ’ (1)

Z > Z/\/EV (Agu) , (a1,505y/m) V') dug

=1 |l|=2m |B|=1,

S% Z Z Z/ A u algagnl)v u) dvg

=1 [l|=2m |B|=1,

g% Z Z/ V (AT'u) algagzm ))Viu) do,

ll=2m |B|=1}y

+Clulls

+ Cllulzs

+C||UHH2

(2.40)  <ClullF since Zmzl
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Similarly after integration by parts one obtains

(2.41) §j/¢mv )V (£222w) doy| < O ulll,

le

(2.42) Z/ u) ViV (PR (u, ) )) diog| < C lluls,

and N
> [y ViR (£ 2w) dv,
=1y

(2.43) +Z/ (P20 (i) )V (£22(w)) dvy < Cllulls

le

Hence for k odd, we also obtain that

2 m.o N2
(2.44) Z / (viu)))? dvy < / (V (A7) dv, +Cllulllys
1= 1M M
Hence we have the claim and this completes the proof.

2.3. Best constant and direct Minimizaton

Let Qp; C M be any smooth n—dimensional submanifold of M, possibly with
boundary. In the sequel, we will either take Qpy = M, or M \ B, (&) for some
€p > 0 small enough. We define H,f)O(QM) C H? (M) as the completion of C°(Qyy)
for the norm || - || 2. In this section, we prove the following result in the spirit of
Aubin [3]:

Theorem 2.3. Let (M,g) be a compact Riemannian manifold of dimension
n > 2k, with k > 1. Qp C M be any smooth n—dimensional submanifold of M
as above. Let P be a differential operator as in (2.3) and let f € C%%(Qy) be
a Hélder continuous positive function. Assume that P is coercive on Hl%,o(QM)-
Suppose that

1
(2.45) g}\f/ / uP(u) dvy < - ;
R (supQM f) 2k Ko(n, k)
where
¢
(2.46) Ny = {u € Hf ,(r) : / £ |ul* dvg =1}

Then there exists a minimizer w € Ny. Moreover, up to multiplication by a constant,
u € C?*(Qy) is a solution to

Pu:f\u|2i_2u in Qg
D =0 on 0y for |a| <k-—1.
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In addition, if the Green’s function of P on Qp with Dirichlet boundary condition
1s positive, then any minimizer is either positive or negative. When Qpy = M, and
the Green’s function of P on M is positive, then up to changing sign, u > 0 is a
solution to

Pu= qulue_l imn M.

Proof of Theorem 2.3: This type of result is classical. We only sketch the proof.
For simplicity, we take Q3; = M. The proof of the general case is similar. Here
and in the sequel, we define (see (2.5))

Ip(u) := / uP(u) dv, for all u € HE(M).
M

We start with the following lemma:

Lemma 2.3.1. Let (u;) € Ny be a minimizing sequence for Ip on Ny. Then

(i) Either there exists ug € Ny such that u; — ug strongly in H2(M), and ug
is a minimizer of Ip on Ny

(i) Or there exists xg € Qus such that f(xo) = maxg—f and |u,-|2nk dvg —

0z GS © — 400 in the sense of measures. Moreover, ulel}\f/f Ip(u) =

1

.
Ko(n,k)(maxar f) 2%

Proof of Lemma 2.3.1: We define « := inf{Ip(u)/u € Ny}. As the functional I, is
coercive so the sequence (u;) is bounded in HZ(M). We let ug € HZ(M) such that,
up to a subsequence, u; — ug weakly in HZ(M) as i — +o0, and u;(z) — uo(z) as
1 — +oo for a.e. x € M. Therefore,

of .. 2!
(2.47) HUOHLI;?C < lzign;glluillei =1

We define v; := u; —ug. Up to extracting a subsequence, we have that (v;); — 0 in
H? [(M). We define p; := (A’;/Qui)Q dvg and ; = |uz|2uk dvg and v; = f|u,|2ﬁk dvg
for all 7. Up to a subsequence, we denote respectively by pu, 7 and v their limits in
the sense of measures. It follows from the concentration-compactness Theorem 2.4

that,
(2.48) U= \u0|2’ij dvy + Z a;d,, and p > (Ag/Quo)2 dvg + Z B0z,
JET JET
where J C N is at most countable, (z;),es € M is a family of points, and (a;) ey €
R>0, (85)jes € R>¢ are such that

#
(2.49) 2%t < Ko(n, k) B; for all j € J.
As a consequence, we get that
:
(2.50) v = flug|* dv, + Z J(w5)o;6,,
JjeT

Since (u;) € Ny, and M is compact, we have that [, dv =1 and then

(2.51) - /M Fluol® dv, + 3 f(z5)ay.

jeT
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Since (u;); — ug strongly in HZ_, (M), integrating (2.48) yields

_ 2/2¢
(2.52) o> Ip(uo)+ Y 8 = alluolZ + Ko(n, k)™ /.
JjeET JjeET

Since a < Ko(n, k)~ (max, f)_2/2i, we then get that

(i) either ”u()”?i =1land o; =0forall j €7,

(ii) or up =0, f(zj,)a;, = 1 for some jo € J, f(zj,) = maxy f and a; =0
for all j # jo.

In case (i), we get from the strong convergence to 0 of (v;); in H?_,(M) that

Ip(u;) = f(Agmvi)Q dvg + Ip(ug) + o(1) as i — +o0. Since ug € Ny and (u;) is
M
a minimizing sequence, we then get that (v;)o goes to 0 strongly in H?(M), and

therefore u; — ug strongly in HZ (M).

In case (ii), (2.52) yields a = Ko(n, k)™ (maxy, f)’2/2i and Ip(up) = 0, which
yields ug = 0 since the operator is coercive.

This completes the proof of Lemma 2.3.1. |

We go back to the proof of Theorem 2.3. Let (u;); be a minimizing sequence for Ip

on Ny. It follows from the assumption (2.45) that case (i) of Lemma 2.3.1 holds,

and then, there exists a minimizer ug € Ny that is a minimizer. Therefore, it is
#

a weak solution to Pfug = af lug)** "% ug in M (see (2.145) for the definition). It

then follows from the regularity Theorem 2.8.3 that u € C2%(M).

Welet G : M x M\ {(z,z)/x € M} be the Green’s function of P on M. We assume
that G(z,y) > 0 for all © # y € M. Green’s representation formula yields

(2.53) p(z) = G(z,y)(Pp)(y) dv, for all z € M and all ¢ € C?*(M).
M

It follows from Proposition 2.8.2 that there exists v € HZ(M) such that
2! -1 .
(2.54) Pv=af |ug|™ in M.

Standard regularity (taking inspiration from Vand der Vorst [35]) yields v € C2*(M).
We have that P (v 4 ug) > 0. Since G > 0, it follows from Green’s formula (2.53)
that v £ up > 0. So v > |ug| and therefore v # 0. Independently, since Pv > 0 and
v Z 0, Green’s formula (2.53) yields v > 0. Using Holder’s inequality and v > |ug|,
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we get that
[ vP(v) dv, afvf|u0|2’u“_l dvg
_ M M
(2.55) Jp(u) = u = u 2
<ff|v|2k dvg> <ff|v|2k dvg>
M M
1 2f 1
o 7
o (J o7 a0y ) ® (1 fluoft aey)
(2.56) < :
2/2%
(ff|v|2ﬁk dvg>
M
2f 1 )
[ 2% —2
o (‘\ff|u0|2§- dvg) % B
(2.57) <M <o /f|u0|2i dv, <a
k

(ot )

1
since f f|u0|2k dvy = 1. Since « is the infimum of the functional, we get that
M

Jp(u) = a. Hence v attains the infimum and therefore it also solves the equation
Pv = /va2§‘;1 weakly in M, and v € H,io(M). Moreover, one has equality in all
the inequalities above, and then |ug| = v > 0, and therefore either ug > 0 or ug < 0
in M. This ends the proof of Theorem 2.3. O

2.4. Concentration Compactness Lemma

We now state and prove the concentration compactness lemma in the spirit of
P.-L.Lions for the case of a closed manifold:

Theorem 2.4 (Concentration-compactness). Let (M, g) be a smooth, compact
Riemannian manifold of dimension n and let k be a positive integer such that 2k <
n. Suppose (un,) be a bounded sequence in HE(M). Up to extracting a subsequence,
there exist two nonnegative Borel-reqular measure p,v on M and uw € H2(M) such
that

(a) Uy, = u  weakly in HE (M)
(b) pm = (A]gc/zum)2 dvg — 1 weakly in the sense of measures
(¢) v = |um|2§= dvg = v weakly in the sense of measures
Then there exists an at most countable index set Z, a family of distinct points

{z; € M :i €I}, families of nonnegative weights {c; : i € I} and {B; : i € I} such
that
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(i)

(2.58) v :|u|2i dvg + Z @0y,
i€
(2.59) i Z(Ag/zu)z dvg + Z Bibu;
i€l

where §, denotes the Dirac mass at x € M with mass equal to 1.

' ]
(ii) for alli €I, CV?/Q’“ < Ko(n, k) Bi. In particular a?/2k < .
i€z

Proof of Theorem 2.4: By the Riesz representation theorem (u,), and (v,,) are
sequences of Radon measures on M.

Step 1: First we assume that « = 0. Let ¢ € C*°(M), then from (2.2) we have
that, given any € > 0 there exists B, € R such that

(2.60)
2/2}

b
[lounf vy | < ok +2) [ 0un)? doy + Bllpunl
M

Since u,, — 0 in HZ(M), letting m — +o0o and then taking the limit ¢ — 0, it
follows that

2/2}
(2.61) (M/lezi dv < Ko(n, k)/tp72 dp
M

By regularity of the Borel measure v, (2.61) holds for any Borel measurable function
v and in particular for any Borel set E C M we have

(2.62) V(E)*% < Ko(n, k) u(E)

Therefore the measure v is absolutely continuous with respect to the measure p
and hence by the Radon-Nikodyn theorem, we get

(2.63) dv = fdu and dp = gdv + do

where f € LY(M,pu) and g € L'(M,v) are nonnegative functions, o is a positive
Borel measure on M and dv_Ldo.

Let S = M\(supp o). Then for any ¢ € C(M) with support supp(p) C S one has

(2.64) Jear=[eran=[orga

M M M

By regularity of the Borel measures p and v (2.64) holds for any Borel measurable
function ¢. This implies that fg =1 a.e with respect to v. So, in particular g > 0
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vaein S. Let v € C(M), taking ¢ = ¥xs in (2.61) we have
2/2%

/|¢|2ixs dv < Ko(n, k) /w“‘xs du
M

(2.65) = Ko(n,k:)/q/zQXS [gdv + do] = Ko(n,k)/¢2gxs dv
M M
Since dvldo and supp v C S, we get that
2/2%
(2.66) /|¢|251 dv < Ko(n,k)/¢29 dv
1 M

By regularity of the Borel measure v the above relation holds for any Borel mea-
surable function .

2}

1
Let ¢ € C(M) and let ¢ = ¢g29c‘2 Xig<ny » dvn = g2§c‘2X{g§N}d1/. Then we have

¢
2/2¢

(2.67) 6|2 dvy < Koln, k) [ ¢* dvy
/ /

By regularity of the Borel measure v the above relation holds for any Borel mea-
surable function ¢.

It follows from Proposition 2.4.1 below that for each IV there exist a finite set Zy,
a finite set of distinct points {z; : ¢ € Iy }and a finite set of weights {a; : i € In}
such that

(2.68) duy = Y @; 6y,

€N

Let Z = |J Zy. Then 7 is a countable set. For a Borel set E, then one has by
N=1

monotone convergence theorem
o

k
(2.69) /XE g% 2dy = lim /XE dvn

N—o00
M M

2f

So g29e‘2d1/ = > &;0;,. Since g > 0 v a.e , there exists o; > 0 such that we have
i€l
dv = @;0,,. Since u = gdv + do > gdv, we get that
i€l

(2.70) p>> Bids,  where §; = g(x;)a
€L

Taking ¢ = &y, in (2.66) we have for all i € 7

¢
(2.71) a?/Z’“ < Ko(n, k) gay = Ko(n, k) Bi
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and

1

(2.72) B

Za?/zi < Z,@z < u(M) < +o00

i€l i€L

This proves the theorem for v = 0. This ends Step 1.

Step 2: Assume u % 0 and let vy, := u,, — u. Then v, — 0 weakly in H?(M).
Therefore, as one checks, fi,, := (A]gc/zvm)2 dvg — p— (A’gﬁ/Qu)2 dvg and 7y, :=
|vm\2?c dvg — v — |u\2?c dvg weakly in the sense of measures. Applying Step 1 to the
measures fi,, and U, yields Theorem 2.4. O

We now prove the reversed Holder inequality that was used in the proof.

Proposition 2.4.1. Let p be a finite Borel measure on M and suppose that
for any Borel measurable function ¢ one has

1/q 1/p
(2.73) (M/ plidn| <c (M/ ol d

for some C >0 and 1 < p < g < 4+o00. Then there exists j points x1,...,x; € M,
and j positive real numbers cy, ..., c; such that

J
(2.74) p=_ cib,
=1

where 6, denotes the Dirac measure concentrated at x € M with mass equal to 1.
pq
Moreover ¢; > (%)ﬁ

PrOOF. Let E be a Borel set in M. Taking ¢ = xg we obtain that, either
u(E) =0 or p(E) > (&)77

We define O := {& € M : for some r >0 pu(B,(r)) = 0}. Then O is open. Now
if K C O is compact, then K can be covered by a finite number of balls each of
which has measure 0, therefore u(K) = 0. By the regularity of the measure hence it

follows that p(O) = 0. If z € M\O, then for all 7 > 0 one has u(B,(r)) > (§)77.
Then

q—p

(2.75) u(leh) =t p(B,01/m) = (&)

li
m—+

Since the measure 4 is finite, this implies that that the set M\ is finite. So let
M\O = {z1,--- ,x;}, therefore for any borel set E in M

(2.76) WE) = w(EN{r,-- a5} = Y u{w:}) = Y pl{x:})de, (B)

z,€E =1

Hence the lemma follows with ¢; = u({z;}). O
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2.5. Topological method of Coron

In this section we obtain higher energy solutions by Coron’s topological method
if the functional Jp does not have a minimizer, for the case f = 1. This will
complete the proof of the first part of Theorem 2.1, that is the existence of solutions
to (2.4) with no sign-restriction. For p > 0 and yg € R"™, we define

(2.77) Byou(y) = (“)

2
12 =+ |y — yol

2 J—
2 =

where the choice of ,, 1’s are such that for all p, ||By0’“”L2uk =1land ||By, .

m. These functions are the extremal functions of the Euclidean Sobolev In-
equality (2.10) and they satisfy the equation
1 2t 1

2. AF =_—— By in R”
(2.78) By, u K()(n,k)ByO’” in

Let 7, € C°(R™), 0 < 7 < 1 be a smooth cut-off function, such that 7. = 1 for
x € By(r) and 7, = 1 for & € R™"\By(2r). Let ¢y > 0 be the injectivity radius of
(M, g). For any p € M, we let 1, be a smooth cut-off function on M such that

o‘@

Mg (exp, ' (x)) for x € Bp(y) C M
(2.79) () = { 70 for @ € M\Bp(tg)

For any x € M, we define
(2.80) By (@) = np(x) Bou(exp,* (x))

BZJX[M is the standard bubble centered at the point p € M and with radius p

n—2k

(2.81) szawu(x) = oy 1 Mp(T) (H)

12 + dy(p, z)°

‘We have

Proposition 2.5.1. Let (M, g) be a smooth, compact Riemannian manifold of
dimension n and let k be a positve integer such that 2k < n. Consider the functional
Jp on the space HE(M)\{0}. Then the sequence of functions (B%L) € C*°(M) de-
fined above is such that:

(a) ll}gé Jp(B),) = m uniformly for p € M
: M

(0) }ng}) HBP,;LHLzﬁ

(¢) B%L -0 weakly in H2(M), as pu— 0

=1 uniformly for p € M
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Proof of Proposition 2.5.1: We claim that (c) holds. We first prove that B%L is
uniformly bounded in HZ(M). Indeed,

Z/ Aa/z BM dug < > / (Aa/z B}iju)2 dvy
askiy angP( g/5)

CZ |Vl ij‘ffuoexpﬂ2 dx

1<k By (q/5)

n—2k |2

2
v (i)
M2_|_ .1'2
<k Bo(1q/5) =

Z / 206D

ISkBy (g /(51))

IN

dx

IN

2
dx.

IN

vi(1+ |x\2)_%

As one checks, the right-hand-side is uniformly bounded wrt g — 0, so (B%L) is
uniformly bounded wrt p and u — 0. Moreover, the above computations yield
fM BM )*dv, — 0 as p — 0. Therefore, B;‘ffu — 0 as ¢ — 0 uniformly wrt p € M.
This proves the claim.

The space HZ(M) is compactly embedded in H?_;(M). Therefore B}, — 0 in
H? (M) as u — 0. Hence

ey 3T

(2.82) lim Z/Al NV'BYL,. V!B, dvg | =0
1=0 3,

Now we estimate the term f | B)! |2k dvy. We fix R > 0. We claim that
(2.83) lim lim / | BM 1% du, = 0

R—+4o00 u—0
M\Bp(1R)

Now for p sufficiently small

#
| B%L\Qk dvg = / | B #\2k dvg
M\BP(:U‘R) Bp(Lg)\Bp(# )
#
= [ B @) gl dy
Bo(tg)\Bo(uR)
#
(2.84) < / 1Box ()% \/lg(expp(uy))] dy.

Bo(“2)\Bo(R)

Since By1 € L2 (R™), this yields the claim.
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Similarly, for u sufficiently small

(2.85) / | BM (% du, = / | B (eapy ()% \/lg(expy())] dy

By (kR) Bo(uR)
#
(2.86) = / | Bo1[*k y\/lg(eapy(py))| dy
Bo(R)
#
(2.87) - / | BoaPh dy+o(IBoall g)  as 0
Bo(R)
Therefore
(2.88) ili%/| Bé\{ﬂpi dv, :/| Bo.1 | dvg
M Rn

So we have (b).
Finally we estimate the term f(Algﬁ/2 ZS’%L)2 dvy. We fix R > 0. By calculating in

M
terms of the local coordinates given by exp,, we get for p sufficiently small
(2.89) / (AR BM )2 4y = / (A¥2By1)? dy+0(1)  as ji— 0,
Bp(uR) Bo(R)
We claim that
(2.90) REIEOO ili% / (A’;/Z B]]D\{M)Z dvy = 0.
M\By(uR)

We prove the claim. Indeed, via the exponential map at p, we have that

(2.91) / (AF2 B))? dvg = / (AF2 B )? dug
M\ By (pR) By (19)\Bp(1R)
k/2
(292) = / (Aeép;g B()”u)2 dvezp;g
Bo(vg)\Bo(uR)
k
(2.93) <C > | D (712 Bo,u)|? dx

121=0 By (14)\Bo(1R)

Since By, — 0 strongly in Hy_, ;,.(R™), then, as 1 — 0, we have that

(2.94) / (AF2 BM Y dvy < C / 712, |D* By u|* dx + o(1)
10

M\ By (uR) Bo(vg)\Bo(uR)
(2.95) <C / DBy |? d + o(1) < C / DByt |? da + o1).
Bo(tg/p)\Bo(R) R\ Bo(R)

Since D¥By 1 € L?(R™), this yields (2.90). This proves the claim.

Equations (2.89) and (2.90) yield (a) and (b) of Proposition 2.5.1 for any fixed
p € M. Since the manifold M is compact, we note that in the above calculations
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there is no dependence on the point p of the closed manifold M. So the convergence
is uniform for all points p € M. This ends the proof of Proposition 2.5.1. o

Fix some 6 such that 4 (n 40 < 22k/m 7 ( 77- Then from (2.5.1) it follows that,
there exists po small, such that for all p1 € (0, tg0) and for all p € M we have

1
(2.96) Jp(B),) < o) +6

We fix zp € M, and we assimilate isometrically T, M to R", and we define the

sphere S := {z € R"/|jz|| = 1}. For (o,t) € S x [0,14/2), we define oM :=
expy, (to) and

n—2k
o po(ty/2 — 1) ’ M
(2.97) uf (z) = o kN, () =B, o o
t T L oleg/2 = ) + dy (0 2)° Foltal2o
It then follows from our previous step and the choice of pg in (2.96)
e 1 mn
(298) Jp(ut) < m+0 V(U,t) e S"x [O,Lg/Q).

Let n € C3°(R™) be a smooth, nonnegative, cut-off function such that n(z) =1 for
|z| > 1/2 and n(x) = 0 for |z| < 1/4. For R > 1, let nr be a smooth, nonnegative,
cut-off function, such that

1 if dg(z0,2) > 185
2.99 x) = i ;
(299)  nr(z) { 7 (10Rexpx0( )) if dg (o, %) < 157

Then the functions nr are such that ng(z) = 1if dg(2o, ) > 5 and nr(z) = 0 if
dg(z0,2) < 35%5. We define

(2.100) vy p(z) :=nr(z) uf (z) for all x € M.

Then we have

Proposition 2.5.2.
(2.101) RETM vf g =uf in H(M) uniformlyV(o,t) € S™ x [0,14/2).

Proof of Proposition 2.5.2: We first note that for all (o,t) € S™ x [0,14/2) the
functions u§ are uniformly bounded in C**-norm in the ball By, (35) € M. And
for any nonnegative integer «, one has |Ving|, < CR®. Therefore

(2.102) HUtR ut||H2 Z/ Aa/z —u7))? du,

aOM

k
(2.103) Z / (A22 (07 p —uf))? dug
=B,
x0

tg
20R

R

k
(2.104) = > /
a=0 .
Bzg(z Y

OR

(5 - D) doy =0 () (wsmz2k41)
)
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The above convergence is uniform w.r.t (o,t) € S™ x [0,¢4/2). This proves Propo-
sition 2.5.2. |

So it follows that, there exists Ry > 0, large, such that for all R > Ry one has

g o n 1 n
(2105) JP(Ut,R) S JP('LLt ) + 29 < 22k/ m V (07 t) € S X [07Lg/2)

As one checks for any (o,t) € S™ x[0,1,/2), the functions v{ p  # 0, and has support

in M\Bg,(t4/40Ry). Let 9 > 0 be such that M\ By, (t,/40Ry) C M\ B, (o) and
we define

(2.106) Qe, 1= M\By, (eo)
Then for any (o,t) € S™ x [0,14/2) the functions v{ 5 € Hf ;(€%,)\{0}. Proposi-
tions 2.5.1 and 2.5.2 yield
1
(2.107) t_l)igl/Q Jp(vf g,) = Kot k) uniformly for all o € S™.

Also vf g, is a fixed function independent of o and

(2.108) v/, — 0 weakly in the sense of measures as t — ¢4/2

capay (4)

We define Sj, := Ko(n,k)~!. For any ¢ € R, we define the sublevel sets of the
functional Ip on N,

(2.109) T, :={ue Ny :Ip(u) <c}
where N, o= {u € H2(0%)/ [uly = 1}

Proposition 2.5.3. Suppose Ip(u) > m for allu € N, then there exists
oo > 0 for which there exists a continuous map

(2.110) T:Tg 0, — Qe

such that if (u;) € Zs, 10, S a Sequence such that \ui\gi dvg — 0p, weakly in the

sense of measures, for some point pg € ¢, , then

(2.111) lim T'(u;) = po

1—+o00

Proof of Proposition 2.5.3: By the Whitney embedding theorem, the manifold M
admits a smooth embedding into R?"*!. If we denote this embedding by F : M —
R27*1 then M is diffeomorphic to F(M) where F (M) is an embedded submanifold
of R*"*1. For u € N,, we define

(2.112) lu) = / F) lu(@)% do,(x)
Qnr

Then T : NV, — R?"*! is continuous. Next we claim that for every ¢ > 0 there
exists a o > 0 such that

(2.113) u€ls 4o = dist (f(U)J’(ﬁm)) <e
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Suppose that the claim is not true, then there exists an ¢ > 0 and a sequence (u;) €
N, such that 1_132100 Ip(u;) = Sy and dist (f‘(u),}'(ﬁeg)> > ¢'. Since there is no
minimizer for Ip on N, it follows from Lemma 2.3.1 that for such a sequence (u;)
there exists a point py € €, such that |uZ|2?c dvy — 0p, weakly in the sense of measures.
So T'(u;) — F(po), a contradiction since dist (f‘(u),}'(ﬁm)> > €’. This proves our
claim.

By the Tubular Neighbourhood Theorem, the embedded submanifold F (M) has a
tubular neighbourhood ¢/ in R?"*+! and there exists a smooth retraction

(2.114) U — F(M)

Choose an ¢y > 0 small so that {y € R?"! : dist (y, F(M)) < ¢} CU . Then from
our previous claim it follows that, there exists oy > 0 such that

(2.115) u€Ts 10y = L(u)eU

We define

(2.116) Ty(u)=F lon /]-'(z) u(z)2% dvg(x)
M

Then the map 'y : Zs, 10, — M is continuous. Similarly as in our previous claim
we have: for every ¢ > 0 small there exists § > 0 such that

(2.117) w€Tsis = dy (Tar(u), Q) < e

Let 720 : M\B,,(e0/2) — €, be a retraction. Choose an € > 0 small so that
{peM:d,(p.Q,) <€} C M\By,(e0/2) . Then from our claim it follows that
there exists a §op > 0 such that I'yr(u) € M\By,(€0/2) for all u € Zg, y5,. So for
u € Is, 15, we define T'(u) := 70 o7 (u). Then the map T satisfies the hypothesis
of the proposition. This proves Proposition 2.5.3. O

Now we proceed to prove the first part of Theorem 2.1. By the regularity result
obtained in Theorem 2.8.3, it is sufficient to show the existence of a non-trivial
H}, ((Q,) weak solution to the equation (see (2.145) for the definition)

28 o .
(2.118) Pu=lu*""u  inQy
Deu=0 on 00y for |of <k-1
Suppose on the contrary the above equation only admits trivial solutions, we will
show that this leads to a contradiction.

Definition 2.5.1. Let (X,|| -||) be a Banch space and fix F € C'(X). A
sequence (uy,) in X is a Palais-Smale sequence for F if F(um) < C, uniformly in
m, while DF(u,) — 0 strongly in X' as m — 4o00. We say that F satisfies the
Palais-Smale condition at ¢ € R, (P.S). for short, if every Palais-Smale sequence
(um,) such that F(um,) — ¢ as m — 400 has a strongly convergent subsequence.

Now suppose that the functional Ip has no critical point in N, that is there is not
weak solution to (2.118). This is equivalent to the assertion that the functional

1 1
(2.119) Fp(u) = 5/up(u) . /|u|zi o,
k
O,

Qe



2.5. TOPOLOGICAL METHOD OF CORON 43

does not admit a nontrivial critical point in HE,O(QEO).

Proposition 2.5.4. If equation (2.118) admits only the trivial solution u =0,
then the functional Ip satisfies the (P.S). condition for ¢ € (S, 227?Sk).

Proof of Proposition 2.5.4: Let (v;) € N, be a Palais-Smale sequence for the

functional Ip such that 4li+m Ip(v;)) = ¢ € (Sk,Q%Sk), if this exists. Define
1—+00

u; = (IP(’UZ'))29€72’UZ'. Then (u;) is a Palais-Smale sequence for the functional Fp

on the space HZ ,(f2,) such that _lir+n Fp(u;) € (552/%, %Sg/%). Since there
’ 1—>—+00

n

is no nontrivial solution to (2.118), it follows from the Struwe-decomposition for
polyharmonic operators by the author [28] that there exists d € N non-trivial

functions u/ € 2%2(R"), j = 1,...,d, such that upto a subsequence the following
holds
(2.120) Fp(u;) = Z E(u?) + o(1) as i — +o0o
j=1
where E(u) := 3 [ (AF2u)2dx — i Ik lu[?tdz. The w/’s are nontrivial solutions
R™ R»

in 2F2(R") to Afu = \u|2nfc_2u on R™ or on {x € R"/x; < 0} with Dirichlet
boundary condition (we refer to [28] for details). It then follows from Lemma 3
and 5 of Ge-Wei-Zhou [18] that for any j, either u/ has fixed sign and E(u) =

%SZ/%7 or u/ changes sign and E(u) > %52/2k7 contradicting lim Fp(u;) €
1— 400

(%S,Z/Qk, %SZ/%). Therefore the Palais-Smale condition holds at level ¢ € (Sy, 2% Sy).
More precisely, there is even no Palais-Smale sequence at this level. This ends the

proof of Proposition 2.5.4. O

Proof of Theorem 2.1: By the Deformation Lemma (see Theorem II1.3.11 and Re-
mark I1.3.12 in the monograph by Struwe [33]), there exists an retraction ( :
Is,+49 — 1§, Where oy is as given in Proposition 2.5.3. Let T ¢ HE 0(Qe)\ {0} =
N, be the projection given by u — m Consider the map h : S™ x [0,14/2] —

L7k

Q., given by

TopB(ry. ('UfRO)) for t<i4/2
(2.121) h(o,t) == { 05\5/2 0 for =2
where oM := exp,,(to). This map is well defined and continuous by Proposition

2.5.3 and there exists py € QEO such that

Po for t=0
expa,($o) for t=14/2

(2.122) h(o,t) = {

So we obtain a homotopy of the embedded (n—1)— dimensional sphere {exp,, ($0) :
o € S"}to a point in Q.,, which is a contradiction to our topological assumption.
This proves Theorem 2.1 for potentially sign-changing solutions.
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2.6. Positive solutions

This section is devoted to the second part of Theorem 2.1, that is the existence
of positive solutions. The proof is very similar to the proof of Theorem 2.1 with
no restriction on the sign. We just stress on the specificities and refer to the
proof of Theorem 2.1 everytime it is possible. We let Q3; C M be any smooth

n—dimensional submanifold of M, possibly with boundary. In the sequel, we will
cither take Qur = M, or M\ By, (o). Foru € HE ((Qar), we define ut := max{u, 0},
u~ := max{—wu, 0} and

(2.123) Ny = {u € Hf o() : /(a*)ﬂc dvy =1}
Qu

which is a codimension 1 submanifold of HE}@(QM) Any critical point u € HE,O(QM)
of Iy on N is a weak solution to

g
(2.124) Pu= ui_’“ Yin ; D%u =0 on 09y for |o] <k —1.

Consider the Green’s function Gp associated to the operator P with Dirichlet
boundary condition on the smooth domain Qy; C M, which is a function Gp :
Qum X Qu\{(z,z) : x € Qu} — R such that

(i) For any = € Qu, the function Gp(z,-) € L' Q)

(ii) For any ¢ € C°°(2y) such that D% = 0 on 9Qyy for all || < k — 1, we
have that

(2.125) o(z) = / Gp(z,y) Poly) dv,(y)
Qum

Lemma 2.6.1. Let (u;) € N3 be a minimizing sequence for Ig on Ny. Then

(i) Either there exists ug € Ny such that u; — ug strongly in H%,O(QM): and
ug is a minimizer of Ip on Ny

(ii) Or there exists xo € Qar such that |ul|2?e dvg T 0z a8 ¢ — +00 in the

sense of measures. Moreover, uleljl\f[+ Ip(u) = "ot
Proof of Lemma 2.6.1: As the functional I, is coercive so the sequence (u;) is
bounded in H,iO(QM). We let uy € H,f,o(QM) such that, up to a subsequence,
u; — ug weakly in HE o(Qr) as i — 400, and u;(x) — uo(z) as i — +oo for a.e.
) is bounded in L2k () and uf (z) — uf (v),

x € Q. As the sequences (uj), (u;

u; () = ug (z) for a.e. x € Qyy, integration theory yields
(2.126) uf —ud and u; — ug weakly in L% (Qar) as i — +oo.
Therefore,

g2 o 2 2 o 2
2120 o | <mint % =1 ), <t o

We claim that

(2.128) u; = Uy strongly in L% ()
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We prove the claim. We define v; := u; — ug. Up to extracting a subsequence, we
have that (v;); — 0 in H?_,(M). Therefore, as i — 400,

(2.129) Ip(u;) = /(A’;/%i)2 dvg + Ip(ug) + o(1)
Qnr

And then, letting « := inf Ip(u), we have that
uEN+

a=Ip(u;) +o(1) > /(A’;/%i)Q dvy + a ||u3f||2ngc +0o(1)
Qum

and then

(2.130) ! (1 - HueriQuk) > /(A’;/Qvi)Q dvg + o(1)
Qe

as i — +0o. We fix € > 0. It then follows from (2.11) and (v;); — 0 in H7?_, (M)
that

(2.131) o (Ko(n, k) +€) (1= [[ug |21 ) = il + 0(1)

Since (a + b)24/2 > a24/2 4+ b%/2 for all a,b > 0, we get that

2t /2 2 2!
(2.132) (@ (Kol k) + 0FE (1 Ju [, ) = 1o, +o0)
. . 2! 21 2! )
Integration theory yields |Ju;||™, = ||v;|| ™", +||uoll ™, +0(1) as i — +oo. Therefore
Lk Lk L%k

2% /2 2! of of
(v (Ko(n, k) + €)™ (1= [Jug | % ) +o0(1) 2 fluill ™, — Juoll ™,
L7k L7k L7k

24 2} —2 —2 28 2 2
2 0+ 0 — T 0 = 1= D 2 e 2 = e 2
] ] f
Then ||uz_H2L’“2£ = [ju; — uaHzL’;i + HUO_Hikzﬁk +0(1) as i — +oo yields
(2.133)

4 2f _q2t _q2t
(e ot 9+ %2 1) (1 %, ) + 000 = [l % = g %
’
(2.134) = oy —ug [ +o(1)
Since aKy(n,k) < 1 and € > 0 is arbitrary small, we get (2.128). This proves the
claim.

We define 11; := (AF/?u;)? dv, and v; = g |2 dv, for all i. Up to a subsequence,
we denote respectively by p and v their limits in the sense of measures. It follows
from the concentration-compactness Theorem 2.4 that,

(2.135) V= |u0|2uk dvg + Z a;0,, and p > (A§/2u0)2 dvg + Zﬁjém
JjeJ jeET
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where J C N is at most countable, (z;);es € M is a family of points, and (a;)cs €

i
R>0, (Bj)jes € R>q are such that a?/z’“ < Ko(n, k) B; for all j € J. Since u; — ug

strongly in L2k (M), we then get that

(2.136) Juf 2 dug — ug P dvg + 3 ayds,

JjeJ
as i — +00 in the sense of measures. The sequel is similar to the proof of Lemma
2.3.1. We omit the details. This completes the proof of Lemma 2.6.1. m|

Lemma 2.6.2. We assume that there is no nontrivial solution to (2.124).
Then the functional Ip satisfies the (P.S), condition on Ny for ¢ € (Sy, 2% Sy) if
the equation.

Proof of Lemma 2.6.2: This is equivalent to prove that the functional

(2.137) Fi(u) = % / uP(u) dv, 72% / (u™)2k du,

Qs k Qum

satisfies the (P.S). condition on H ((Qar) for ¢ € (%SZ/%, %SZ/%). Let (u;) be

a Palais-Smale sequence for the functional F’ ; on the space H ,370(9 ). Then, as
v € HE o(Qr) goes to 0,

(2.138) / i PX(v) dvg — /(uj)Qi—lv dvy = o (|lolz)

Qnr Qpr
Without loss of generality we can assume that u; € C2°(€2) for all i. Let ¢; €
C*°(Qp7) be the unique solution of the equation

f_q .
(2.139) { Py = (uf)*~ in Qu
D%p; =0 on 0y for |a]<k-—1
The existence of such ¢; is guaranteed by Theorem 2.8.2. It then follows from
Green’s representation formula that

(2.140) pi(z) = /Gp(sc,y)(uz*(y))%’1 dvg(y) > 0
Qe

for all x € Q. Note that the sequence (g;) is bounded in H,ao(QM). It follows
from (2.138) that ¢; = u; + o(1), where o(1) — 0 in Hf ;(Qr) as @ — +oo. And
so (i;) is Palais-Smale sequences for the functional F}; on the space HI%,0<QM)~
Therefore, since @; > 0, it is also a Palais-Smale sequence for Fp defined in (2.119).
Since there is no nontrivial critical point for F ; , using the Struwe decomposition
[28] as in the proof of Proposition 2.5.4, we then get that (p); is relatively compact
in H,%O(QM), and so is (u;). This ends the proof of Lemma 2.6.1. O

Proof of Theorem 2.1, positive solutions: this goes essentially as in the proof of
Theorem 2.1, the key remark being that the functions vf ; defined in (2.100) are
nonnegative. We define N{* = {u € H} () : Hu‘*‘||L2£ = 1}, where Q,, =
M\ B, (7o) and €y > 0 was defined in (2.106). For ¢ € R we define the sublevel
sets of the functional Ip on N as T := {u € N{° : I¥(u) < ¢}. Arguing as in the
proof of Proposition 2.5.3, it follows from Lemma 2.6.1 that there exists a dg > 0
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such that there exists I : I;fk 60 ﬁéo a continous map such that: If (u;) € I;fk +60
j|2£ dvy — 0p, weakly in the sense of measures, for some
point pg € §,, then lim I'(u;) = po.

1—+o0

is a sequence such that |u

Let 70 :H,E,O(QEO)\{Hu'*'Hin =0} — N{° be the map given by u — =

T
L2

Consider the map h : S™ x [0,14/2] — Q, given by

I'oB(rpeo(vfp ) for t<tg4/2
= + 110
(2.141) o) { 05‘5/2 for t=14/2
where [ : I§k+40 — I§k+50 is a retract (we have used Lemma 2.6.2) and oM =

expy, (to). Note here that we use that vf > 0. As in the proof of Theorem 2.1, h
is an homotopy of the embedded (n—1)—dimensional sphere {expy,(40) : 0 € S™}
to a point in €2, which is a contradiction to our topological assumption. So there
exists a nontrivial critical point u for the functional Ip on N{°, which yields a
weak solution to (2.124). It then follows from the regularity theorem 2.8.3 that
u € C*®(Q,), u > 0, is a solution to (2.2). This ends the proof of Theorem 2.1 for
positive solutions. O

2.7. An Important Remark

We remark that the topological condition of Theorem 2.1 is in general a necessary
condition. Consider the n-dimensional unit sphere S” endowed with its standard
round metric h, and let P, be the conformally invariant GJMS operator on S™.
By the stereographic projection it follows that S™\{zo} is conformal to R™. Also
one has that S™\{z(} is contractible to a point. Let {2, be the domain in S"\{zy}
constructed as earlier in (2.1), and let u € H/?,O(Qeoﬁ u # 0 solve the equation

# .
o { B

D =0 on 00, for |a|<k-1

Then by the stereographic projection it follows that there exists a ball of radius R,
By(R) such that there is a nontrivial solution v € Hf ;(Bo(R)) to the equation

(2.143) Ay = (vH)2%~1 i By(R)
DY =0 on 0By(R) for |a|<k-—-1

By a result of Boggio[7], the Green’s function for the Dirichlet problem above is
positive. Therefore, we get that v > 0 is a smooth classical solution to

T T

D=0 on OBy(R) for |a| <k-—1

This is impossible by Pohozaev identity, see Lemma 3 of Ge-Wei-Zhou [18].
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2.8. Appendix: Regularity

Let f € L*(Qr). We say that u € ng,o(QM) is a weak solution of the equation
Pu= fin Q) and D% = 0 on 9Qyy for |a] < k —1, if for all p € C°(Qy)

k—1
(2.145) / A’;/2u A’;/2¢ dvg + Z / Ai(9)(V'u, Vi) dv, = / fo du,
On a=0 gy, Oum

Now let the operator P be coercive on the space Hl%,o(QM)> i.e there exists a
constant C' > 0 such that for all v € H,f,O(QM)

2
(2.146) / ub(u) dvg > Cllulyz (q,)-
QM
We then have

Proposition 2.8.1 ((Hp-coercivity).

[[Pull,

m
we€H (Qm)\{0} Hu”HfC’

(2.147)

Proof of Proposition 2.8.1: We proceed by contradiction. If not, then there exists
a sequence (u;) € C°(Qyy) such that ||ul||H£ =1land ligrn [ Puill, = 0. It follows
11— 400

from classical estimates (see Agmon-Douglis-Nirenberg [1]) that
(2.148) iz 20y < Co (I1Pill o + luill gy ) = O(1)

So there exists ug € Hgk,o(QM) such that upto a subsequence u; — ug weakly in
Hy, o(Qar). Then w; — ug strongly in Hy ;(Qa) and so ||u0||H5 = 1. Also ug
weakly solves the equation Pug = 0 in Qp; and D%uy = 0 on 0Qy for |o| < k — 1.
It follows from standard elliptic estimates (see Agmon-Douglis-Nirenberg [1]) that
up € C*(Qp). Then, multiplying the equation by ug and integrating over M,
coercivity yields

(2.149) Clluoll 200 < /uoPuo dvg =0
M

and hence ug = 0, a contradiction since we have also obtained that ||ugl| wr =1
This proves Proposition 2.8.1. O

Proposition 2.8.2 (Existence and Uniqueness). Let the operator P; be co-
ercive. Then given any f € LP(Qu), 1 < p < +o0, there exists a unique weak
solution u € HY ,(Qar) N HE, () to

(2.150) { D =0 on 0y for |a| <k-—1

The proof is classical and we only sketch it here. For p = 2, existence and
uniqueness follows from the Riesz representation theorem in Hilbert spaces. For
arbitrary p > 1, we approximate f in LP by smooth compactly supported function
on ;. For each of these smooth functions, there exists a solution to the pde with
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the approximation as a right-hand-side. The coercivity and the Agmon-Douglis-
Nirenberg estimates yield convergence of these solutions to a solution of the original
equation. Coercivity yields uniqueness.

We now proceed to prove our regularity results. The proof is based on ideas devel-
oped by Van der Vorst [35], and also employed by Djadli-Hebey-Ledoux [13] for
the case k = 2.

Theorem 2.5. Let (M,g) be a smooth, compact Riemannian manifold of di-
mension n and let k be a positve integer such that 2k < n. Let Qs be a smooth
domain in M and suppose u € Hl%,O(QM) be a weak solution of the equation

(2.151) { D% =0 on 0y for |al <k-—1

8
where | f(z,u)] < Clu|(1 4 |[u[** %) for some positive constant C, then
(2.152) u € LP(Qyr) forall 1 <p< 400
]
Proof of 2.5: We write f(z,u) = bu where |b| < C(1 + |u[*"?). Then b €
L2k (Q;) and u solves weakly the equation

{ Pu="bu in Qu

(2153) D% =0 on aQM for ‘Oé| <k-1

Step 1: We claim that for any € > 0 there exists . € L™/?%(Qy;) and f. € L>(Q)
such that

(2.154) bu = geu + fe, 19l /2 (00 < €

i—+o00

{lu=d}

Now lim / |b|"/2k dvg = 0, so given any € > 0 we can choose ¢y such that

|b|n/2k: d’Ug < en/2k.
{lulzio}
We define g = X{ju|>i}0 and fe = (b — qc)u = X{ju|<io}b- Then, since |b| <

i
C(1 + [u|**?), we have that 1Gell /2 (2, < € and fe € L*(M). This proves our
claim and ends Step 1.

We rewrite (2.153) as

PU:q6u+fe IHQM
(2.155) { Do =0 on 0y for |af <k -1

Let 47, be the operator defined formally as

(2.156) How = (PF) 7 (qen)

Then Pu = g.u + f. becomes u — S u = (P;)_l(fg).

Step 2: we claim that for any s > 1, 22 maps L*(Q) to L*(Qas).
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We prove the claim. Let v € L*(Qu), s > 2?« then qov € L*(2s) where
. ns n . .
§ = ————, and we have by Holder inequality

n + 2ks

(2.157) lactllscarnry < el ansy 10l onn

Since |(¢el fn/2x(q,,) < € so we have

(2.158) lgevll s () < €lolle ()

From (2.8.2) it follows that there exists a unique ve € H5, (/) such that

Pv. = qv in Qu
(2.159) { D*.=0 on Iy for |a|<k-1

weakly. Further we have for a positive constant C(s)

(2.160) el i, ey < CC6) 001l
So we obtained that
(2.161) el canry < Ol gy

By Sobolev embedding theorem H3, (€25/) is continuously imbedded in L*(Qas) so
ve € L*(Q2pr) and we have

(2.162) [vell 22 @ary < C(S)elVl Lo

In other words, for any s > 2,11 the operator J# acts from L®(Qpr) into L°(Qar),
and its norm ||| ;._, ;. < C(s)e. This proves the claim and ends Step 2.

Step 3: Now let s > Qﬁk be given, then for € > 0 sufficiently small one has

1
2163 FEAPES
and so the operator I — 7 : L®(Qpr) — L*(Qy) is invertible. We have
(2.164) u— A= (P (f)

Since u € L2 (Qy) and f. € L=(Qy), so u € LP(Qyy) for all 1 < p < +oo.
This ends the proof of Theorem 2.5. a

Proposition 2.8.3. Let (M, g) be a smooth, compact Riemannian manifold of
dimension n and let k be a positive integer such that 2k < n. Let f € C%%(Qx)
a Holder continuous function. Let Qp; be a smooth domain in M and suppose
u € Hy o(Qnr) be a weak solution of the equation

#_ . )
(2.165) Pu= fluf*u or fut)%=1in Qu
D% =0 on Oy for o <k-1

Then u € C?*(Qyy), and is a classical solution of the above equation. Further if
u>0 and f € C(Qr), then u € C®(Qyr).
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Proof of Proposition 2.8.3: It follows from (2.5) that u € HE, (Q) for all 1 <
p < +oo. By Sobolev imbedding theorem this implies u € C?*~17(Q,,) for all
0<y<Ll |u|2§:‘_2 u, (u*)ﬂv’1 € C1(Qyy). The Schauder estimates (here again, we
refer to Agmon-Douglis-Nirenberg [1]) then yield u € C?*7(Qy,) for all v € (0,1),
and v is a classical solution.

If w > 0, then the right-hand-side is w21 and has the same regularity as wu.

Therefore, iterating the Schauder estimates yields u € C°°(€ys). This ends the
proof of Proposition 2.8.3. a

2.9. Appendix: Local Comparison of the Riemannian norm with the
Euclidean norm

Let (M, g) be a smooth, compact Riemannian manifold of dimension n > 1. For
any point p € M there exists a local coordinate around p, ¢, L"QCR* = M,
©(p) = 0, such that in these local coordinates one has for all indices i, j,k = 1,...,n

{ (1—€)di; < gij(x) <(1+€)d;; as bilinear forms.
gij(z) — dij| <€

Here we have identified T, M = R"™ for any point p € M. For example, one can
take the exponetial map at p : exp,, which is normal at p. We will let ¢, be the
injectivity radius of M. Using the above local comparison of the Riemannian metric
with the Euclidean metric one obtains

Lemma 2.9.1. Let (M,g) be a smooth, compact Riemannian manifold of di-
mension n and let k be positive integer such that 2k < n. We fix s > 1. Let
ga;l QCR" = M, ¢o(p) =0 be a local coordinate around p with the above men-
tioned properties. Then given any ey > 0 there exists T € (0,t4), such that for any
point p € M, and u € C° (By(7)) one has

(2.166)
(1- eo)/(Ak/2u)2 dr < /(A’;/Q(uo ©p))? dvg < (1 —l—eo)/(Ak/Qu)Z dx
R M R
and
(2.167) (1 —¢€o) / |u]® dz < /|uo p|® dvg < (14 €) / lul® dx
R M R

Proof of Lemma 2.9.1: In terms of the coordinate map <p;1 :Q CR" - M, for
any f € C?(M) we have

. (5%fow5

° —1
2169)  Agf (o) = —7(0) () - T ea) S )

8xk
Since the manifold M is compact, then given any € > 0 there exists a 7 € (0, ¢)
depending only on (M, g), such that for any point p € M and for any x € By(7) C
R™ one has for all indices 7,5,k =1,...,n

{ (1—¢€)di; < gij(x) <(1+€)d;; as bilinear forms.

9ij(x) — 0ij| < €

Without loss of generality we can assume that 7 < 1. We let u € C°(R") be
such that supp(u) C Bo(7). In the sequel, the constant C' will denote any positive
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constant depending only on (M,g) and 7: the same notation C' may apply to
different constants from line to line, and even in the same line. All integrals below
are taken over By(7), and we will therefore omit to write the domain for the sake
of clearness.

Case 1: k is even. We then write £ = 2m, m > 1. Then calculating in terms of
local coordinates we obtain
2m—1
(2.169) |A7 (uo @p) (g, H(x)) — A™u(z)| < €|V u(z)| + C Z ‘V(Zm_ﬁ)u(m)
B=1

where () is a constant depending only on the metric g on M. Then we have

‘/ (wo o) (e (2))) dx—/(Amu)de

(2.170)
2m—1 2m—1

C Z /‘V (2m=F) ‘ dx+26/}V2mu’|Amu|dx—|—C' Z /\Amu|‘v(2m A ‘dx

(2.171)

§2262/|V2mu|2d1‘+

Now for any f such that f < 2m — 1 we have V™ 8y ¢ 252(R") and by

Sobolev embedding theorem this implies that |V (2m—p) | LQg/Z(R”). Applying
the Holder inequality we obtain

2m—1 2m—1

2/2%
(2.172) Z/‘v@’"ﬁ dr < C ZT (/‘V(Qm_ﬁ)ur%dx> [

And then the Sobolev inequality gives us

of 2/2
(2.173) (/‘V(zm_ﬁ)u /d;v> SC/’VQmu|2dx

Applying the integration by parts formula, we obtain

(2.174) /|V2mu|2dx:/(Amu)2da:

So we have, since 7 < 1

2m—1

(2.175) > /\va Bul? dm<CT/ (A™u)? da

1Bl=1

Therefore, we get that
(2.176)

[ @y @) o [ @ma?as

< C(e+7)/(Amu)2 dx



2.9. APPENDIX: LOCAL COMPARISON OF THE RIEMANNIAN NORM WITH THE EUCLIDEAN NORM3

Now in these local coordinates one has

(2.177) (176)"/2/(A;”(uosop)(%;l(ﬂc)))2 da < /(A’gﬂ(uowp))z dug
M
(2.178) < (142 /(A;”(uo<pp)(<p,?1($)))2 da

So given an €y > 0 small, we first choose € small and then choose a sufficiently small
7, so that for any u € C2° (By(7)) we have
< eo/(Amu)2 dx

Case 2: k is odd. We then write kK = 2m + 1 with m > 0. Calculating in terms
of local coordinates, like in the even case, we obtain

(2.180) | [V(AF (w0 @p)) P (" (2)) = [V(A™u)* ()| < ] V(A™u) [ (2)

(2.179) ‘/ (uopy)) dvgf/(Amu)Q dz

So we have the lemma for k even.

2m
(2.181) +Ce ’V2m+1u|2 (z) + C’Z ‘V(QmH_B)u‘z (x)
=1
(2.182) +Ce [V>" | (z) [V(A™)|(x) + CZ (Ve (2) [V (A™ )| (2)

p=1
for all x € By(7). Therefore

[1v@g@oe )P, @) do - [19am0)

2m 2
+Ce/|v2m+1u\2 dac—i—CZ/’V(Qm“_ﬂ)u‘ da
p=1

x Se/\V(Amu)F dx

(2.183)

2m
+ce/|v2m+1u| |V(A™w)| dx+C’Z/’V(2m+1*5)u‘ |V(A™ )| da
B=1

And then by calculations similar to the even case, along with the integration by
parts formula, we obtain

2184
'/w o) Pley @) de = [IVAmM0P(E) da] < E, (e v7) [I9@m0P do

Now given an €y > 0 small, we first choose € small and then choose a sufficiently
small 7, so that for any u € C2° (By(7)) we have

(2.185) /|v uogop)) dvg — /|V (A™0)[? dx <60/|V (A™0)? dx

Then one has the lemma for k odd. This ends the proof of Lemma 2.9.1. O






(1]

Bibliography

S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic
partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl.
Math. 12 (1959), 623-727.

Michael T. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds,
Invent. Math. 102 (1990), no. 2, 429-445.

Thierry Aubin, Equations différentielles non linéaires et probléme de Yamabe concernant la
courbure scalaire, J. Math. Pures Appl. (9) 55 (1976), no. 3, 269-296.

, Some nonlinear problems in Riemannian geometry, Springer Monographs in Math-
ematics, Springer-Verlag, Berlin, 1998.

Abbas Bahri and Haim Brezis, Non-linear elliptic equations on Riemannian manifolds with
the Sobolev critical exponent, Topics in geometry, Progr. Nonlinear Differential Equations
Appl., Birkhuser Boston, 1996.

Thomas Bartsch, Tobias Weth, and Michel Willem, A Sobolev inequality with remainder term
and critical equations on domains with topology for the polyharmonic operator, Calc. Var.
Partial Differential Equations 18 (2003), no. 3, 253-268.

T. Boggio, Sulle funzioni di Green d’ordine m, Rend. Circ. Mat. Palermo 20 (1905), 97-135.
Thomas P. Branson, The functional determinant, Lecture Notes Series, vol. 4, Seoul National
University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1993.
, Sharp inequalities, the functional determinant, and the complementary series, Trans.
Amer. Math. Soc. 347 (1995), no. 10, 3671-3742.

Thomas P. Branson and Bent Orsted, Explicit functional determinants in four dimensions,
Proc. Amer. Math. Soc. 113 (1991), no. 3, 669-682.

Jean-Michel Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris
Sér. I Math. 299 (1984), no. 7, 209-212.

Philippe Delanoé and Frédéric Robert, On the local Nirenberg problem for the Q-curvatures,
Pacific J. Math. 231 (2007), no. 2, 293-304.

Zindine Djadli, Emmanuel Hebey, and Michel Ledoux, Paneitz-type operators and applica-
tions, Duke Math. J. 104 (2000), no. 1, 129-169.

Pierpaolo Esposito and Frédéric Robert, Mountain pass critical points for Paneitz-Branson
operators, Calc. Var. Partial Differential Equations 15 (2002), no. 4, 493-517.

Charles Fefferman and C. Robin Graham, Conformal invariants, Astérisque Numero Hors
Serie (1985), 95-116. The mathematical heritage of Elie Cartan (Lyon, 1984).

, The ambient metric, Annals of Mathematics Studies, vol. 178, Princeton University
Press, Princeton, NJ, 2012.

Filippo Gazzola, Hans-Christoph Grunau, and Guido Sweers, Polyharmonic boundary value
problems, Lecture Notes in Mathematics, vol. 1991, Springer-Verlag, Berlin, 2010.

Yuxin Ge, Juncheng Wei, and Feng Zhou, A critical elliptic problem for polyharmonic oper-
ators, J. Funct. Anal. 260 (2011), no. 8, 2247-2282.

C. Robin Graham, Ralph Jenne, Lionel J. Mason, and George A. J. Sparling, Conformally
tnvariant powers of the Laplacian. I. Existence, J. London Math. Soc. (2) 46 (1992), no. 3,
557-565.

Matthew Gursky and Andrea Malchiodi, A strong mazimum principle for the Paneitz oper-
ator and a non-local flow for the Q-curvature, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 9,
2137-2173.

Fengbo Hang and Paul Yang, Sign of Greens function of Paneitz operators and the Q cur-
vature, International Mathematics Research Notices (2014). doi: 10.1093/imrn/rnu247.

, Lectures on the fourth order Q— curvature equation, arXiv:1509.03003 (2015).

55



56

23]

[24]

BIBLIOGRAPHY

Emmanuel Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant
Lecture Notes in Mathematics, vol. 5, New York University, Courant Institute of Mathemat-
ical Sciences, New York; American Mathematical Society, Providence, RI, 1999.

Emmanuel Hebey and Frédéric Robert, Coercivity and Struwe’s compactness for Paneitz
type operators with constant coefficients, Calc. Var. Partial Differential Equations 13 (2001),
no. 4, 491-517.

Jerry L. Kazdan and F. W. Warner, Scalar curvature and conformal deformation of Rie-
mannian structure, J. Differential Geometry 10 (1975), 113-134.

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit
case. I and II, Rev. Mat. Iberoamericana 1 (1985), no. 1, 2, 45-121, 145-201.

Andrea Malchiodi, Topological methods for an elliptic equation with exponential nonlineari-
ties, Discrete Contin. Dyn. Syst. 21 (2008), no. 1, 277-294.

Saikat Mazumdar, Struwe decomposition for polyharmonic operators on compact manifolds
with or without boundary (2016). Preprint. arXiv:1603.07953, hal-01293952.

Stephen M. Paneitz, A quartic conformally covariant differential operator for arbitrary
pseudo-Riemannian manifolds, SIGMA 4 (2008), Paper 036, 3.

Patrizia. Pucci and James. Serrin, Critical exponents and critical dimensions for polyhar-
monic operators., J. Math. Pures Appl. (9) 69 (1990), no. 1, 55-83.

Frédéric Robert, Positive solutions for a fourth order equation invariant under isometries,
Proc. Amer. Math. Soc. 131 (2003), no. 5, 1423-1431.

, Admissible Q-curvatures under isometries for the conformal GJMS operators, Non-
linear elliptic partial differential equations, Contemp. Math., vol. 540, Amer. Math. Soc.,
Providence, RI, 2011, pp. 241-259.

Michael Struwe, Variational methods, 4th ed., Ergebnisse der Mathematik und ihrer Grenzge-
biete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 34, Springer-Verlag, Berlin,
2008. Applications to nonlinear partial differential equations and Hamiltonian systems.
Charles A. Swanson, The best Sobolev constant, Appl. Anal. 47 (1992), no. 4, 227-239.

R. C. A. M. Van der Vorst, Best constant for the embedding of the space H? N H& (Q2) into
L2N/(N=4)(Q), Differential Integral Equations 6 (1993), no. 2, 259-276.




CHAPTER 3

Struwe’s decomposition for a Polyharmonic
Operator on a compact Riemannian manifold with
or without boundary

ABSTRACT. Given a high-order elliptic operator on a compact manifold with
or without boundary, we perform the decomposition of Palais-Smale sequences
for a nonlinear problem as a sum of bubbles. This is a generalization of the
celebrated 1984 result of Struwe [16]. Unlike the case of second-order oper-
ators, bubbles close to the boundary might appear. Our result includes the
case of a smooth bounded domain of R™.

3.1. Introduction

Let (M, g) be a smooth, compact Riemannian manifold of dimension n with or
without boundary. In the latter case we understand that M is a compact, oriented
submanifold of (M ,g) which is itself a smooth, compact Riemannian manifold with-
out boundary and with the same metric ¢ and dimension n. As one checks, this
includes smooth bounded domains of R”. When the boundary OM # 0, we let
v be its outward oriented normal vector in M. Let k be a positive integer such
that 2k < n. We define the Sobolev space ngo(M) as the completion of C°(M)

for the norm u +— Zf:o [Viull2. This norm is equivalent (see Robert [14]) to the
1/2
Hilbert norm |[lul| gz := (Zz o Ju (A l/2 2 dv ) where Ay = —divg(V) is the

Laplace-Beltrami operator and, for o odd, AJuAgv := (VA u VA v)4 for
all u,v € H(M). For details we refer to Aubln 3 ] and Hebey [9].

We consider the functional

I(u) == /(M/2 dvg + = Z/ AV uVu)dvgf—/ u|2k do,

where for all [ € {0,...,k — 1}, A; is a smooth T4 -tensor field on M and A; is
symmetric (that is 4;(X,Y) = A;(Y,X) for all T}-tensors X,Y on M). Here,
ol = —20- is the critical Sobolev exponent such that HE (M) < L% (M) is
continuous, which makes the definition of I consistent for all u € H, ,3,0(M ). Critical
points u € H o(M) for I are weak solutions to the pde

(3 1) Pu = |U|2§“_2u in M
' %u=0 on OM for |af<k-1
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where for any u € C2¢(M), we define
k—1

Pu:=Afu+ Y (=179 (A i g V)
=0

and where we say that u € Hf ((M) is a weak solution to (3.1) if

k—1
/ ARy, A2 oy + Z/ A(V'uV'e) dug = / [ul** 2 ugp do,
M 1=0 /M M

for all ¢ € H, ,f’o(M ). As shown by the regularity theorem in Mazumdar [13], a
weak solution u to (3.1) is indeed a strong solution, u € C?*(M).

Definition 3.1.1. Let (X, ||-||) be a Banach space and F € C*(X). A sequence

(ua) in X is said to be a Palais-Smale sequence for F if (F(uq))a has a limit in R
when o — +00, while DF (uq) — 0 strongly in X' as a — +00.
In this chapter, we describe the lack of relative compactness of Palais-Smale se-
quences for I, which is due to the noncompact embedding H} (M) — L2 (M).
For  any open domain of R™, we let D?(Q) be the completion of C2°(£2) for the
norm u + ||A*/?ul|y. The limiting equations of (3.1) are

]
(3.2) APy = |u** %4 in R, u € D(R")
8
AFy = u**u  in R” 2 (o
3.3 b uepime
(3:3) {agu_o on orr [ 4 € PR

where A := Ap,, is the Laplacian on R™ (with the minus sign convention) endowed
with the Euclidean metric Eucl. Associated to the functional I is the limiting
functional
1 1
E(u) := 5/ (A*/24)? da — 27/ |u|29c dx for all u € DZ(R™).
n ¢ JRn

Our main theorem below shows that the lack of convergence to a solution of equation
(3.1) is described by a sum of Bubbles:

Theorem 3.1. Let (uy) be a Palais-Smale sequence for the functional I on
the space Hj o(M). Then there exists d € N bubbles [(m&j)), (r((f)), u], j=1,...d,

(see Definition 3.2.1 below) there exists us € H,iO(M) a solution to (3.1) such
that, up to a subsequence,

d
U = Usg + ; B, o (@) +o(1) where lim o(1) =0 in H o(M)
and
d
I ua) = I(us) Z u) +0(1)  as a — 4oo.

In Section 3.2, Bubbles are deﬁned up to a term going to 0 strongly, which is
relevent here. As one checks, given u € D?(R") a nontrivial weak solution to (3.2)
or (3.3), then multiplying the equation by u and integrating by parts yields

(34) E(’LL) > ﬁfi = %Ko(n’k)—n/Qk
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where Ko(n,k) be the best constant of the embedding D7 (R™) — L% (R™), that is

. Ak/? 2 d
(3.5) Ko(n,k)™' = inf Jan (A7) -
u€Dy (R™)\{0} (f]Rn |u|2i dx) 28

When the Palais-Smale sequence is nonnegative, the bubbles are positive and cor-
respond to positive solutions to (3.2). As shown in Lions [12], Swanson [17], Ge-
Wei-Zhou [7], these solutions are exactly the extremals for (3.5) and are of the
form

n—2k
2

A
3.6 U=y [ — R™, A > 0
(3.6) u A= Qg <1+)\2|'a|2) ac >

where o, 1 > 0 is explicit. We then get the following:

Theorem 3.2. Let (u,) be a Palais-Smale sequence for the functional I on
the space H,fﬁo(M). We assume that u, > 0 for all « € N. Then there exists
Uso € H o(M) a solution to (3.1), there ewist; deN sequences : (xg)), e (x&d)) €
M, (r&l)),...,(r&d)) € (0,+00) such that r$) = 0 and rY) = o(d(:c(aj),c’?M)) as
a — 400 forall j=1,...,d, and up to a subsequence,

. n—2k
7A&J)

d
Ug = Uoo F E n (ftgzj‘))ilexp_(lj)(') An K ( : N ) + 0(1)
= ( 40) ()2 + dy -, 282

where limg, oo 0(1) = 0 in HE o(M), and 1 and (f&j))’s are as in (3.8). Moreover,

I{ug) = I(us) + dpt + o(l) asa— +oo
where B is as in (3.4).

When k£ =1 and M is a smooth bounded domain of R™, Theorem 3.1 is the pio-
neering result of Struwe [16]. There have been several extensions. Without being
exhaustive, we refer to Hebey-Robert [11] for k£ = 2 and manifolds without bound-
ary, Saintier [15] for the p—Laplace operator, El-Hamidi-Vétois [5] for anisotropic
operators and Almaraz [1] for nonlinear boundary conditions. When the manifold
is the entire flat space R™, the decomposition is in the monograph by Fieseler-
Tintarev [18]. Another possible description is in the sense of measures as in Lions
[12]: a general result of this flavour for high order elliptic operators on manifolds
is in Mazumdar [13].

Palais-Smale sequence are produced via critical point techniques, like the Mountain-
Pass Lemma of Ambrosetti-Rabinowitz [2] or other topological methods (see for
instance the monograph Ghoussoub [8] and the references therein). Concerning
higher-order problems, we refer to Bartsch-Weth-Willem [4], Ge-Wei-Zhou [7],
Mazumdar [13], the general monograph Gazzola-Grunau-Sweers [6] and the ref-
erences therein. Theorem 3.1 is used by the author in [13] to get Coron-type
solutions to equation (3.1).

Acknowledgements. I would like to express my deep gratitude to Professor
Frédéric Robert and Professor Dong Ye, my thesis supervisors, for their patient
guidance, enthusiastic encouragement and useful critiques of this work.
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3.2. Definition of Bubbles

In the spirit of the exponential map, we first cook up a chart around any boundary
point. We fix zop € M. Since M is a smooth submanifold of M, there exist Q an
open subset of M with zq € €, there exists U C R™ open with 0 € U, such that for
any x € QN OM there exists T, € C(U, M) having the following properties.

T(0) =z

Tz is a smooth diffeomorphism onto its image T.(U).

T Un{z: <0}) =T, U)NM

To (UN {1 =0}) = T.(U)NOM

(z,2) = T(z) is smooth from Q x U to M

dT:(0) : R® — T, M is an isometry

dT.(0)[e1] = v, where v, is the outer unit normal vector to OM
at the point x.

This map is defined uniformly with respect to x in a neighborhood 2 of a fixed point
xo € OM. By a standard abuse of notation, we will always consider x +— 7, without
any reference to € or xg: this will make sense in the sequel since the relevant points
will always be in the neighborhood of a fixed point.

Definition 3.2.1. A “Bubble” is a triplet [(z4), (ra),u] where z, € M is a
convergent sequence, 1o > 0 for all « € N with lilf ro =0 and
a—+00

a—r+00 Ta

a, OM :
either {xa €M, lim U(za, OM) = +o0 and u € Di(R") satisfies (3.2)}

or {za € OM and u € DY(R™) satisfies (3.3)}
If v, € M, we let 7, > 0 be such that

i (M o dy (20, OM
(3-8) lim 7y =7 € loa 29(2 )> ,; lim a9 andfa<M

a—+00

and we define

where n € C(By(ig(M))) is identically 1 in a neighborhood of 0. Here, the expo-
nential map is taken on the ambient manifold (M, g).

If £o € OM, we let zg = limy_s oo To, and we define
_n=2k T1
Buora(u) = (To, (@) ra u(x(f”)>
Ta

where T, is as in (3.7), Q is a neighborhood of oy € OM and n € C(U) is
identically 1 in a neighborhood of 0.

Beside [(24), (ra), u], the definition of a bubble depends on the choice of the cut-off
function 7, the radius 7, and the chart 7,. However, as shown in the proposition
below, after quotienting by sequences going to 0, the class of a Bubble is independent
of these later parameters.



3.2. DEFINITION OF BUBBLES 61

Proposition 3.2.1. The definition of Bubbles depend only on [(x4), (Ta),u],
up to a sequence going to 0 strongly in HI%,O(M)'

Proof of Proposition 3.2.1. We first assume that u € Di(R") satisfies (3.2) and
that

(3.9) g %% 0M) _

a—+00 Ta
. . . _n—=2k
For i = 1,2, we set the bubbles B!, := n’ ((7%) lexp (")) ra 2 u(rylexp;l(})),
where ' € C°(By(2a;)), n* = 1 in Bo(ai) with 0 < 2a; < 1y(M); 7, > 0 are
as in (3.8). We let 7% = max{a;7., as72} and r™" = min{a;7., ax72}, and let

€MAT =y, [rMAT and €M = p,, /r7i" Then lim, 0 €7%% = 0 and lim,_,0 €7 = 0.

The comparison lemma 9.1 of [13] yields C' > 0 such that for any R > 0 and «
large

k
2
lay2 (BL-B2) I} < / (a2 (B2 - 52)) " do,
ZE:% g9 Z B2T7naz (Ia)\Bvan (wa) I

2
/ (A2 (BL. . () duy.
i= 121 0 M\BRTa(th)

Therefore, using (3.33), we get that BL — B2 = o(1) in H?(M) as a — +00.

Now we consider the case of a boundary bubble, that is x, € M and and u €
D3 (R™) satisfies (3.3). Fori = 1,2, we set B, := ' (7'1 1( )) r&gu (r;lTi;j(~))
where T, i = 1,2, are as in (3.7), U is a neighborhood of zg € OM and n',n* €
C°(U) are identically 1 in a neighborhood of 0. One has

k

Z/M (Alg/2 (Bl — Bg)f dvg <

=0

k 2

3 [ () e [ (o)

M\Dq (R)

where Do(R) := T (Bo(raR)) U T2 (Bo(roR)) It follows as in the comparison
Lemma 9.1 of [13] that there exists C' > 0 such that for « large

k 2
Z/D (R)NM <Alg/2 (Ba - Bi)) dvg <
=0 o

2
c (A2 ((BLoTL) = (B2o L)) do<

1=0 /(Bo<raR)u@gl(Bo(mR)))mRz
k

U2 (na(r Nu) — AY2 (P N (1 . 2:5:0
C;/Bommm [A (1°(ra-)u) = A2 (0" (®a(ra-)) (a%(a)))} dz = o(1)

where ®,, := 7;20471 o7, and d(®4)o = Id. Similarly to the case (3.9), we get that

k
2
lim  lim / (AW B};Bi) dv, = 0.
Ra+ooaa+oo; M\Du(R) 9 ( ) g
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This completes the proof of Proposition 3.2.1. (]

3.3. Preliminary analysis

The proof of Theorem 3.1 goes through four steps. All results are up to a
subsequence. We let (uq)q € H,%)O(M) be a Palais-Smale sequence for I.

Step 1: We claim that (u,)s is bounded in H%O(M).

Proof of the claim: Since (u,) is a Palais-Smale sequence, we have that

k—1
(DI(ug), ug) = /(As/zua)Q d%—!—Z/ Ay (V' Viug) du,
M S

#
~ [ 1ol doy = o (Jual )

Therefore
4 n
B10) [ JuaPt dvy = F1a) +0 (Juallz) < C+ 0 (Jall)

Since (I(uq))q is bounded, then putting together these equalities yields
Juallye < €+ Clually , +C [ Jual do,
k k—1 M

Now since the embedding of H,f)o(M) in Hg,k—1(M) is compact, then for any ¢ > 0

there exists a B, > 0 such that ||u||i1§ <e ||u\|§l§ + B, Hu||§n for all u € HZ(M).
—1 ¢ k

Therefore, taking € > 0 small enough, we get that

#
a7 < C + C/M |ua| % dv,

Then using (3.10) we get that ||ua||§{§ <C+C ||ua||H£ for all o, and therefore the
sequence (uq) is bounded in HE ;(M). This proves the claim. O

Since (uq) is bounded in HE j(M), there exists uo, € Hy (M) such that

Ua = s weakly in HZ ((M) and L% (M),
(3118w, — use  strongly in HZQ,O(M) and in LY(M) for I < k, g < 22,
Ua(T) = Uso(z) a.ein M

We define v, := Uq — Uso-

Step 2: We claim that
(1) DI(us) =0
(2) (vq) is a Palais-Smale sequence for the functional J on the space H,iO(M),
(3) J(va) = I{ta) — I(us) + 0(1) as a = +o0.

where

1 1
J(u) = 5/ (Az/zu)2 dvg — Ti/ |u|2u’c dvg for u € H,io(M)
M 2. JM

Proof of the claim: We fix ¢ € H,iO(M). We have that
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k—1
(DI(ua), 5) = /M A2y A2 dyy + 3 /M A1) (V' Vo)
a=0

(3.12) - / |u0¢|29€_2 Uap dvg = o(1)
M

The following classical integration Lemma will be often used in the sequel (see
Lemma 6.2.7 in Hebey [10] for a proof):

Lemma 3.3.1. Let (M,g) be a Riemannian manifold. If (f.) is a bounded
sequence in LP(M), 1 < p < +o0, such that fo, — f a.e in M, then f € LP(M)
and fo — f weakly in LP(M).

‘ at
Since (Jua]* > tg)q is bounded in L*~* and converges a.e., Lemma 3.3.1 yields

8 i
(3.13) / o] 2 g dvg = / thoo | 7 tnotp dvg + (1)
M M

Therefore, the weak convergence of (uq) t0 oo, (3.12) and (3.13) yield that ue is
a weak solution to (3.1). This proves point (1) of Step 2.

We now estimate I(u,). From (3.11) we have

/M(A(;/QUQ)Q dv, — /M(AS/QuOO)Q dv, = /M(A_’;/%Q)Q dvy + o),

k—1 k—1
Z/ Aj(V'uy, V') doy = Z/ Aj(Vuno, Viug,) dvg + o(1)
1=0 /M 1=0 /M

The following two inequalities will be of constant use in the sequel: for any 1 < p <
400, there exists C' > 0 such that

(3.14) | a+bP —[alP —[bP | < C (laP~*b] + [b["~"|al)
(3.15) | la+b[P(a+b) —|alPa —[b]Pb | < C(lal”[b] + [b]"]a])
for all a,b € R. Tt then follows from (3.14) that

g_ g
< C ([0l utoe| + oo % ual)

# # f
[N e P PN

and then using Lemma 3.3.1, we get that

/ |ua|2?v dv, —/ |uoo|2?c dv, :/ |va|251 dvg + o(1)
M M M

Hence I(uq) — I(tuso) = J(va) +0(1) as a — 400, which proves point (3) of Step 2.

Next we show the sequence (v, ) is a Palais-Smale sequence for the functional J on
HE o(M). Let ¢ € HE o(M), we have

B16)  (DI(va)og) = (DI(ua).e) = (DI(u). )+ [ Buip vy + ool

where

2 2

' ' '
Dy = |vg + uoo\zk 2 (Vo + Uso) — \uoo|2k Uoo — |’Ua‘2k Vo

Inequality (3.15) and Hélder’s inequality yield

<o (flea-2

#_
i+ ool 2ua| | llelly

(3.17) ‘/ Do dug
M
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Since v, — 0 in in(M), Lemma 3.3.1 yields
:
gt el

Qk_l 2k_1

Since (uq) is a Palais-Smale for I, then (3.16), (3.17) and the continuous embedding
H,%)O(M) < L% (M) yields (DJ(vy), ) = 0(H<p||H2) as a — +oo uniformly wrt
Y E H,f’O(M). This proves the claim and ends Step 2. d

#
|’Ua|2’“72uc>o’

The next lemma adresses the compactness of a Palais-Smale sequence for small
energy. It will be generalized to the case of small local energy in Proposition 3.4.1.

Step 3: Let (va) be a Palais-Smale sequence for J on H}, ((M). We assume that
Vo — 0 weakly in H,io(M), and that J(v,) — B with 3 < B, where §* is as in
(3.4). We claim that v, — 0 strongly in Hf ;(M).

Proof of the claim: Since (vq) is bounded and (DJ(va),va) = o([|valmz), we get
that
k k
(3.18) J(vq) = f/ (A’;/Qva)2 dvg +0o(1) = 5/ |va|2’uv dvg +0o(1) = B+ o(1).
M M

n

As a consequence, 8 > 0. It follows from Mazumdar [13] that for any € > 0 there
exists B. > 0 such that

(3.19) ||u||§i < (Ko(n, k) +¢) /M(Algc/zu)z dv, + B. ||UH?LI;;‘71

for all u € HZ(M). Applying this inequality to v,, the strong convergence to 0 in
H?_ | and (3.18) yield

n \2/2k n
(28)"" < o(n. k) +2) 28
Letting ¢ — 0 and using 0 < 8 < (¥, we get that 3 = 0, and then (3.18) yields
v — 0 strongly in Hf o(M). This proves the claim and ends Step 3. O

Step 4: Proof of Theorem 3.1. Let (u,) be a Palais-Smale sequence for the
functional I on the space H, ,g’o(M ). By substracting the weak limit u,, we get
a Palais-Smale sequence (v,) for the functional J with energy J(v,) = I(uq) —
I{uso) +o0(1) as @ — +o0. If v, — 0 strongly in H,%)O(M), then we end the process.
If not, we apply Lemma 3.4.1 to substract a bubble modeled on v € DZ(R™) \ {0}
and we get a new Palais-Smale sequence for J, but with the energy decreased by
E(v). If the resulting sequence goes strongly to 0, we stop the process, if not,
we iterate it again. This process must stop since the energy E(v) > 8% and after
finitely many steps, the energy goes below the critical threshold 3% and then the
convergence is strong by Step 3. This proves Theorem 3.1. O

The rest of the chapter is devoted to the proof of Lemma 3.4.1.

3.4. Extraction of a Bubble

In the sequel, for any (M,g) as in the introduction, we let HZ(M) be the
completion of {u € C*°(M) : |lul|g2z < 4o} for the norm [ - [|z2. The space
H} (M) is then a closed subspace of Hj(M). The following lemma is the main
ingredient in the proof of Theorem 3.1



3.4. EXTRACTION OF A BUBBLE 65

Lemma 3.4.1. Let (v,) be a Palais-Smale sequence for the functional J on
H,f,O(M) such that v, — 0 weakly in H,f,O(M) but not strongly. Then there exists
a bubble (By, r, (v)) such that upto a subsequence, the following holds:

® Wy =V — By, r, (V) is a Palais-Smale sequence for J,
o J(wy) =J(va) — E(w) 4+ 0(1) as a = +oo.
The proof of this lemma goes through 10 steps.

Step 1: We prove a strong convergence Lemma for small energies. This is a
localized version of Step 3 of Section 3.3.

Proposition 3.4.1. Let (N, gx) be a Riemannian manifold with positive in-
jectivity radius.
e Let (gi); be metrics on N such that g; — g in C! . as i — +oo for all p.
o Let (P;); be a family of operators on C*°(N) such that

k—1
Pii= A+ (=0 (A, gy V)
=0

as i — +oo for all p.

with families of symmetric tensors (A}) — A; in CT

e We fix Q C N an open smooth domain, and we define
1 1
(3.20) Ji(u) == i/guPiudvgi — /Q |u\22 dv,, foru € HE(),
k

such that J; is C'. Here, the background metric is goo.

o Welet (u;) € H,E’O(Q) and Uso € Hi,O(Q) be such that u; — us weakly in H/f,o ()
as ¢ — +oo.

o We assume that there exist a compact K C N such that

DJ (w:
lim sup 7< Jiui), )

=0
T uenz (@), Supp ock el ez (<)

o We assume that there exists Koo > 0 and C > 0 such that
(3.21)

2%
(/N |u\2£ dvgx> * < Koo /N(Asfu)z dvg,, + C’||u||fqi_1 for allu € CZ(N).

We fix xo € Q and 6 € (0,44 (N)/2). We assume that
B, (20) C K (the ball is wrt goo ),

2f

k
1 of o
/B (25)0 |uz~|2§1 dvg, < (2[() 2 foralli € N,
w0 N

Then u; — us strongly in HZ (B, (6) N Q).

(3.22)

Proof of Proposition 3.4.1: Up to extracting a subsequence, we assume that u; —
Uoo strongly in H? |(w) as i — +oo for w C § relatively compact and w;(x) —
Uso(x) as i — +oo for a.e. © € Q. Let n € C®°(N) such that n(x) = 1 for
x € By, (0) and n(x) =0 for x € N\ B,,(2d). Since n has compact support, we get
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that n%(u; — us) € HE,O(Q) is uniformly bounded in H%,O(Q)' Since By, (20) C K
it then follows from hypothesis (3.20) that

(DJ;(ug), n* (i — tuso)) = o(1) as i — 4-00.
Since 7% (u; — uoo) — 0 strongly in HZ (), we then get that

(3.23) /QA’gci/QuiA’g“i/Q(nQ(ui — Uno)) dvg, = /Q |ui\2i_2um2(ui — Uoo) dvg, + 0(1)

as ¢ — +o00. The weak convergence of u; to us, and the strong convergence of g;
t0 goo ON compact sets yields
(3.24)

QA§{2U1AI;{2(772(UZ_UOO)) dvgi :/QAS{2(U1_U00)A51/2(772(UZ_uoo))dvgz—’_o(l)

as i — +00. As one checks, for any ¢ € H2(R2), we have that AL/ 2AY?(120) =

2
(Ak/z(mp)) + Zp<k,l§k VPp + Vi, where A x B denotes a linear combination

of bilinear forms in A and B. Therefore, using again the strong convergence of
n%(u; — uso) to 0in HZ |, we get that

2
(3.25) /Q AR AR (0P (u; — o)) dvg, = /Q (A’;ﬁ(n(uﬁum))) dvy, + o(1)

. . ‘ o ot (gt
as i — 400. Moreover, since |u;|? =212 (1; — s ) is uniformly bounded in L2/(2x—1)

and goes to 0 almost everywhere as i — 400, then it goes weakly to 0 in L2/ -1,

and then [, |uz|2 202 (U; —Uoo )Uoo dvg, — 0 as i — +oo. Therefore, plugging (3.24)
and (3.25) into (3.23), we get that

(88200 = ) e, = [ a0 = ) g, + 01

as i — 4o00. Since g; — goo as i — 400 in C? locally on compact sets and n(u; — oo )
is uniformly bounded in H?(Q2), we get that

/Q (Agf(”(“i - “00))>2 dvg., = /Q | 2 (s — use))? dvg,, +o(1)

as i — +oo. Holder’s inequality, the Sobolev inequality (3.21), the convergence of
(i), the strong convergence in H?_, and (3.22) then yields

[ (8822000 = ) o,

#
2f -2

Tof 2
</ ui|2idvgw> : (/ |n<ui—uoo)|2idvgw)2k+o(1)
B, (26)NQ N

i <KoO /N (A'g“fg(n(ui - Uoo)))2 dvg., + C|n(u; — uoo)|i1,%1> +0(1)

21i -2

2’i 2
/ \ui|2?c dvg, * Ko / Ak/2 ;— uoo))) dvg.. +o(1)
Bay (26)NQ

as i — —+oo. Therefore, we get that ||A§f(n(ui — Uoso))l2 = 0 as i — +o0.
Since n(u; — uso) — 0 strongly in H,f_l and 7 has compact support, we get that

IN

IN

IA
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n(ui —uso) — 0 strongly in HZ(£2), and therefore u; — too in HZ (By, (6)NQ2). Note
that this is up to a subsequence. Indeed, by uniqueness, the convergence holds for
the initial sequence (u;). This proves Proposition 3.4.1. O

Step 2: Since (DJ(vy),vq) = 0(1), one has
J(vg) = S/ |va\231 dvg +o0(1) =B+ o0(1) as a — +oo
M

where 8 := limg— 400 J(va). By Step 3 of Section 3.3, 8 > (4. Therefore, since M
is compact, for any rg > 0, there exists yo € M and Ay > 0 such that

i
/ "Uoz|2k dvg > )\O
ByO(To)ﬂM

For any r > 0, we set

(3.26) fia () == max Va2 dv,,
ze€M J B, (r)nM

the Levy concentration function. In particular, ps(ro) > Ao for all a. We fix

1
0 < A< e :=min< Ao, o
(2K (n, k))s/2:=2)

where Ko(n, k) is the best constant in the Euclidean Sobolev inequality (3.5). Since
U (0) = 0, there exists (14)q € (0,79) and (24)q € M such that:

(327) A= /f’/a(roz) = / |va|2i dUg
By, (ra)NM

Step 3: We claim that limy_s 400 7o = 0.

Proof of the claim. We argue by contradiction. If (r,) does not go to 0 up to a
subsequence, we get that there exists § € (0,i4(M)/2) such that for all x € M,
we have that~me(26)mM |va|2?c dvg < X for all . We apply Proposition 3.4.1 with
(N,goo) = (M,g9), Q= M, P, = P, g0, = g, Jo = J, and the Sobolev inequality
(3.19) of [13], and we get v, — 0 as & — +o00 in HZ(M N B,(d)) for all x € M.
With a finite covering, we get that v, — 0 as a — +oo strongly in H,iO(M)7
contradicting our initial hypothesis. This proves the claim and ends Step 3. (|

First assume that

(3.28) lim Uza,OM) _ +00.

a— o0 Ta

We define

n—2k . M d . M
Ba(@) =T Ua(expy, (rax)) for |z] < (M) hd 2] < d(wa, OM)
T

[e3 e}

Step 4: Suppose that (3.28) holds. We claim that there exists v € DZ(R") such
that for any n € C°(R™), we have that

Ne — nu weakly in D7 (R") as k — 4-00.
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Proof of the claim. Fixn € C(R™), and let Ry > 0 be such that Supp n C By (Rp)-
We define

Ta

—1
Na(T) =1 (expxa(zr)> for x € B, (Rora), and 1, (x) := 0 outside.

Up to a subsequence, there exists zg € M and 7 > 0 such that B, (Rora) C
By, (1) € M. It then follows from the comparison Lemma 9.1 of Mazumdar [13]
that there exists C' > 0 such that

2 2
/ (Ak/Q[(nava) o expxa]> dx < C/ (AZ/Q(nava)) dvy
BO(ROTQ) Bma (Rora)

for all a. With a change of variable, rough estimates of the differential terms and
Holder’s inequality, we then get

9 k
/ (a%2(55.)) " dz <y :/ |V 1|2 VF a2 g
Bo(Ro) 1—0 Y Bza (RoTa)

k

k
2(1—k) 1ol |2 l 2
(329) <C ZO /B o ral |V g |2 dvg < C ?:o v va||n_22&_l)

It follows from Sobolev’s embedding theorem that H? (M) C L3tn (M) for all
1 =0,...,k and that this embedding is continuous. Since (v4)s is bounded in HZ,
then (V'v, ), is uniformly bounded in H?_, (with tensorial values), and then there
exists C' > 0 such that

(3.30) IV all 20 < Cllvallgz < C°

n—2(k—1)

for all « > 0 and I = 0, ..., k. It then follows from (3.29) that (n?,)e is bounded
in Di(R™). Therefore, up to a subsequence, there exists v, € D7(R") such that
N — vy weakly in D,% (R™) as @ — 4o00. A classical diagonal argument then yields
the existence v € Hf ,.(R") such that o, — nv weakly in DF(R") as a — +00.
We fix R > 0. For any R’ > R, a change of variables and (3.30) yields

/ |Vl77R/ f}a
Bo(R)

where g, := exp};_g(rq-). Using weak convergence and convexity, letting a — 400
and then R — +oo yields |Viv| € L#=30= (R™). As one checks, we then have
that the sequence (nrv)g is a Cauchy sequence in Di(R™), and then we get that
v € D(R™). This ends the proof of the claim, and ends Step 4. O
Step 5: We assume that (3.28) holds. We let v € D(R") as in Claim 3. We
claim that v # 0 is a weak solution to Aky = |v[2:=2p in D2(R™).

2n 2n

n—2(k—1) l n—2(k—1)

ga dvg, < / [Vivalg dvg < C
By, (RoTa)

Proof of the claim. We fix R > 0 and we apply Proposition 3.4.1 with (N, g) :=
(R™, Eucl) and Q := R™. As above, we define a family of smooth metrics (gq)a
such that g, () := exp;_g(rox) for x € Bo(3R), go(x) = Eucl for z € R™\ By (4R),
and g, — Eucl in C? (R") as a — +oo for all p. Let p € C°(R™) be such that

loc

Supp ¢ C Bp(R). We define

_n-—2k
2

Yal(x) :==Tq ) (G’pral(x))

Ta
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for all z € M. As one checks, ¢, is well-defined and has support in B,_(Rry).
Moreover, using the comparison Lemma 9.1 in Mazumdar [13] and arguing as in
Step 4, we get that [[¢oallmz ) < C(R)|¢l a2 mn) for all @ > 0. Since (uq) is a

Palais-Smale sequence, we have that

(DJ(va),pa) = oll¥allz ) = olllelmz @)

as a — oo uniformly for all ¢ € C°(R™) such that Supp ¢ C Bo(R). With a
change of variable, we get (DJ(va), 00) = (DJa(nra), ) where

1 1
Jolw) =5 [ (@42 du,, ~ [,
. ).

for all u € HZ(R™). Therefore, (DJy(nr0a),p) = o(lellmz  @n)) as @ = 400
uniformly for all ¢ € C°(R™) such that Supp ¢ C Br(0).
We fix zp € R™ such that B, (1/2) C Bo(R). A change of variable yields

\an)aF’; dvg, = / |ua|2§£ dvg.

/Bzo (1/2)NBo(2R) €xp,,, (raBazy(1/2))

For o > 0 large enough, we have that exp,_(roaBu,(1/2)) C Bexp, (x0)(Ta). There-
fore, it follows from the definition of p, that

/ el dug, < pa(ra) = A < e
B.o(1/2)7Bo(2R)

for all « large enough and xy € R™ such that 1/2 + |zo| < R. With the Sobolev
inequality (3.5) on R™, we apply Proposition 3.4.1 to (nr¥4)a, and we get that

lim 7grd, = nrv strongly in HZ(B,,(1/4)).

a—+00

Using a finite covering, we then have @, — v strongly in H?(Bo(R/2)) as o — +00.

Sobolev’s embedding theorem yield the convergence in L% (Bo(1)). Since
/ ‘ﬂa|2ﬁk dvg, = / |Ua|2i dvg = ta(Te) =X >0,
Bo(1) wa(Ta)

passing to the limit o — 400 yields fBo(l) |v|2i dr = X # 0, and therefore v # 0.
This proves the claim and ends Step 5. O

Note that indeed, we have proved that
(3.31) lim @, = v strongly in H7(By(R)) for all R > 0.

a——+00

We choose a sequence (7 ) of positive real numbers as in (3.8) with n € C2°(Bo(d))
(with ¢ € (0,i,(M))) identically 1 around 0. As in Definition 3.2.1, we set

Va(@) = Bay ., (0) =1 (p”) o, <p<>>

Ta Ta
We have that V,, € H%O(M).
Step 6: We claim that
(3.32) Vo =0 in Hf o(M) as oo — +o0.
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Proof of the claim. We argue essentially as in [13]. We fix 0 <! < k and we define
€a := Ta/Tq such that lim, o0 € = 0. We fix R > 0 (potentially 0). It follows
from the comparison Lemma 9.1 of [13] that there exists C' > 0 such that

/ AUV, )2 o, < C (AYV2(V, 0 exp, ) dr
M\B._, (Rra) Bo(07a)\Bo(Rra)
2
< oo | (A2 (1 (ea) ) d
Bo(des ')\ Bo(R)
< oo | V0 o) 0 d
30(5651)\30(3)
< Crik=h / V=i (e0) || V0|2 da
Z "\Bo(R)
< Cri(kfl) / ei(lﬂ')\vivﬁdx
; "\Bo(R)

, , ]
Since v € DZ(R™), we have that Viv € D2_ (R"), and therefore |Viv| € L*t-o (R™)

where Q?k_i) = Therefore, Holder’s inequality yields

n— 2(k i) "

(3#3) DYV dv, < CF0- Z>Z< /
R

M\Bg, (Rra)

2
2f
Vo2t da | 77
"\Bo(R)
Taking R =0 and [ = 0, ..., k yields the boundedness of (Va)a in Hf o(M).

Arguing as in above, we get that for any R > 0 and any [ =0, ..., k, we have that

l
(3.34) / (AY2V,)? dvg < Cr2D Z/ =0 |Viy|? da
(Rra) i BO(R)

Since Viv € L} (R") for all i = 0,...,k, then taking [ = 0 in (3.33) and (3.34),
letting @ — +o0o and then R — oo yields V,, — 0 in L*(M). Then the weak
compactness of bounded sequences yields (3.32). This proves the claim and ends
Step 6. O

Step 7: We claim that
(3.35) DJ(V,) — 0 strongly as o — +00
Proof of the claim. We set ¢ € C°(M). We have that

(DJI(Va), ) = / ARV ARG gy, —/ Val* 2 Vo du,
M M
We fix R > 0 and we define
g_
Ina(p) = / APV AR dyg — / Va2 Viagp dug
B, (Rra) (Rra)

and

IIR,a(@) = / AS/QVQAE/QSO dUg — / |‘/a|2’ﬂ“_2 Vap d’l}g.
M\Bg,, (Rra) M\By,, (Rra)
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Step 7.1: we estimate I o(¢). Via Holder’s and Sobolev inequality, we have that

1
2
(3.36) |IIpa(p)| < (/D (R)(A’;/QVQ)Q dUg> X HAS/%HQ

2ti —1

k
2f g

g 2]
+/ (AT I
Do (R) k
1
k/2 2 ’ of 2
<[ @bvran) o+ ([ bt Nl
Do (R) D.(R)

with Dy (R) := M \ B, (Rry). Lemma 9.1 in [13] and v € L% (R™) yield
(3.37)

Vi du, < c/

|V 0 exp, \2£ dx < C’/ \v|2i dx
R™\Bo(Rra)

M\B,,, (Rrs) R\ Bo(R)

Plugging (3.33) with [ = k and (3.37) into (3.36), letting R — 400 and a@ — +00
yields

I
(3.38) lm G Re(®)

_ . 2
pim ||80||H,§ = 0 uniformly wrt ¢ € H}c,o(M) \ {0}

Step 7.2: We now estimate I o(p). We define

n—2k

Bal®) = nleat)ra ™ ¢ (eapa, (rat))
where €, := r4/To. As one checks, B, € C°(R™). Using the comparison Lemma
9.1 in [13] and arguing as in (3.33)-(3.34), we get that

1@allp2®n) < Cllell m2
where C' > 0 is independent of ¢. As one checks,
Inae) = [ AYPA G dy, [ P,

Bo(R) Bo(R)

Since go — Eucl as @ — 400 in C] (R™) for all p > 1, we get

(3.39) Ira(p) = / AFP2yAR2G dr— /
Bo(R)

t_o __ _
[of205, do+o (|1Pallpz )
Bo(R)

where the convergence is uniform wrt @,. Since v is a weak solution to (3.1), then
(3.39) yields

(3.40) lim  lim Rel®)

= 0 uniforml t e H2 (M 0
R—+o00 a—++00 ||90||H;~€’ untormly Wit ¢ k70( )\{ }

The limits (3.38) and (3.40) yield (DJ(Va), @) = o(|[¢l[#2) as & = +oo uniformly
wrt ¢ € C°(M). The boundedness of (V,) in H,f’O(M) then yields DJ(V,) — 0
strongly in (Hf ,(M))" as a — +oo. This proves (3.35) and ends Step 7. O

We define wq, 1= vq — Vg. It follows from (3.32) that w, — 0 weakly in H,iO(M).
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Step 8: We claim that
(3.41) DJ(wq) — 0 strongly

Proof of the claim. For ¢ € H,f’O(M), we write

(3.42) (DJ(wa), ¢) = (DJ(va), ) = (DJ(Va), ) — /M Pap dug
o 2f _2 2f 2 2f _2 . ..
where @, := |wo | wo — Vo] Vo + |Val 7 Vy. Then by applying the Holder
and Sobolev inequalities we get
[ a g | < ol 19l

Step 8.1: We fix R > 0. Inequality (3.15) and Holder’s inequality yield

/ B |2/ =D o,
M\ B, (Rra)

2! /(28 —1)

<c (1o P21V Vo P2 )
M\Bma(RTQ)
gc(/ a2 dvg) / WVl du, |
M M\Bma(RTQ)
2?@—2

1 22
P 21
+C (/ |ua2idvg>2k ' / Vil du, |
M M\BEQ(RT‘Q)

Since (vq) is uniformly bounded in HZ(M), then (3.37) yields

(3.43) lim  lim (B |2H/ D) dy, = 0.
R—+o00 a——+00 M\Bma(RT(y)

This ends Step 8.1.
Step 8.2: We fix R > 0. A change of variable and inequality (3.15) yield

/ |¢a|2n’c/(2iil) dvy
Bz, (Rra)

§_ §_ ¢y [2h/(2E-1)
I e G R e A
Bo(R)
<2§in—2>2i ;iﬁ <2§iﬁ—2>2?¢ ;i
<C [0 — 0| 270 |o|%k7 4 o] R |Oq —o|%kTt ] dx
Bo(R)

For any n € C>°(R™), we have that 79, — nv weakly in D#(R"). Therefore, up to

extracting a subsequence, (04)4 is uniformly bounded in L% (Bo(R)) and goes to v
almost everywhere as a — +00. Therefore Lemma 3.3.1 yields that for any R > 0,

(3.44) lim (B |24/ @D gy, = 0.
a—r+o0 BwQ(Rra)
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The limits (3.43)-(3.44) yield ||@a||2u/(2n,1) — 0 as &« — 4o00. Then by (3.42) we
k k

get DJ(wq) — 0 in (H,%’O(M))' as a — +o0o. This proves (3.41) and ends Step
8. O

Step 9: We claim that we have the following decomposition of energy.

(3.45) J(wy) = J(va) — E(v) + o(1) where o(1) — 0 as o — +00.
Proof of the claim. As one checks,
J(va) = J(we) — J(Vo) = (DJ(wq), Va)
1
_7/ (\wa + Va|2§v — |woé|2£ — 2§€|wa|2ﬁk_2ana — \Va|2i) dv,
2, Jm
We fix R > 0. Arguing as in the proof of (3.44), we get that

lim (Iwa + Val% = Jwal = 2] jwal% 2w Ve — [Val*) dv, = 0.
a—+o00 Bwa (Rra)

As one checks, there exists C > 0 such that

a-’-b?uk— a29‘—2ﬁa2uk72ab_ b2i
k

< C (Jal*=2Jpf2 + Ja] - %)
for all a,b € R. As in the proof of (3.43), we get that

lim  lim (lwa + Va2 = Jwal% = 2 fwal % 2waVa = Va2 ) dv, =0,
R—+o00 a—+00 Do (R)

where D, (R) := M \ By, (Rry). These yield J(vy) = J(wq) + J (Vo) + o(1).
We now estimate J(V,,). The estimates (3.33) and (3.37) yield

lim  lim ((A’;/QVQ)Q + |Va|2i) dvy =0
R—+o00 a——+o0o M\B,,, (Rrs)

For R > 0, we have that

/ (Ay°Va)  Valt) / (Agv)? Pl
B, (Rra) 2 2}& " Iso(m) 2 2’; Ie

za

Since g, — Eucl locally uniformly in C? for all p and v € DZ(R"), we get that

AR/2y7 )2 2! AF/2)2 2!
lim lim (&g Vo) — Vo™ dv, :/ ( v) _ |v] % dr
Rotooa=+too [ (g 2 2! n 2 2!

All these estimates yield (3.45). This ends Step 9. O
Step 10: Next we deal with the case
dg(xa,0M) = O(rs) as a — +00

Since r, — 0 as a — 400, then there exists zo, € M such that z, — x as
a — +oo. For any a € N, we let 2z, € OM be such that

dg(Ta; 2a) = dg(@a, OM)

In particular, limy 1o 2o = Too. We choose a family of charts z — 7T, for z €
QNOM asin (3.7). Since the d(7,)o is an isometry, there exists C1,Co > 0, 71,72 > 0
such that for any z € QNOM, r <7 and y € R™ N By(72), one has

BTz(y) (ClT) NMcCT, (By(’l“) n R?) C BTz(y) (Cg?”) NnM
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For z € r;1U N {z1 < 0}, we define

n—2k
0a(T) =10 % 04 0T, (roz) and go(z) :== T, *g (rox)
As one checks, for any n € C2°(R™), we have that 77, € Di(R"™). Arguing as Step
4, we get that there exists v € D?(R") such that
Nie — nu weakly in D7 (R™) as a — +00.

Moreover, using Proposition 3.4.1 and arguing as in Step 5, we get that v Z 0 is a
weak solution to (3.3) and ¥, — v as @ — +oo strongly in HZ(By(R) NR™) for all
R > 0. As in Definition 3.2.1, for « € N and « € M, we set

Val@) i= By (0)(@) =0 (T @) a0 (i T @)
We define w,, := v, — V,,. Arguing as in Steps 6 to 9, we get that
o w, — 0 weakly in Hy (M)
o DJ(wa) — 0 weakly in (HZ o(M))’
o J(wy) = J(va) — E(v) +0(1)
as @ — +o00. This completes the proof of Lemma 3.4.1.

3.5. Nonnegative Palais-Smale sequences
To prove Theorem 3.2, we first set the following property:

Proposition 3.5.1. Let (u,) be a Palais-Smale sequence for the functional
I on the space H,EWO(M). Let d € N and let [(m,&j)),(rgj)),u(j)], j=1,...d, be
d bubbles as in Theorem 3.1. Then, for any N € {1,...,d}, there exists L > 0
sequences (y))as0 € M and (M,)a>0 € (0,+00), j = 1,---, L, such that for any
R>0

lim lim [t — B T(N)(U(N))|2i dvg =0
R/ —+400 a—+00 (BIN(RT(];I)\ UJL'I=1 Byj (R'ké))ﬁM a sTa
where for any j, j = 1,---, L, dg(al,yl) = o(rY) and N, = o(rl)) as a — +o0.
Moreover, we have that
dy (i, i )2 i j
lim M—i—r—‘?—kr—‘?:—l—ooforalli;éje{l,...,d}.
a—r+00 rir r, o

We omit the proof which goes exactly as in Hebey-Robert [11]. Here we use
the boundary chart (3.7) for bubbles accumulating on the boundary.

We now prove Theorem 3.2. We let (uy), be as in the statement of the theorem,
and we let [(xg,j)), (r((f)),u(j)], Jj =1,...,d, be the associated bubbles. We fix N €

{1,...,d}. For simplicity, we define r,, := rY) and Ty 1= 2. We assume that
rotd(xe, M) — +00 as o — +o0. It then follows from Proposition 3.5.1 that there

#
25

exists a finite set S C R™ such that limg_, oo 7o = u” strongly in L

S (R™\S)
where 0q(2) :=7a > uq(exp, (ror)) for z € R™. Up to extracting a subsequence,
the convergence holds a.e. Since u, > 0, we then get that u”Y > 0. It then follows
from Lemma 4 in Ge-Wei-Zhou [7] that there exists A > 0 and a € R™ such that
ulN = U, is of the form (3.6).
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We claim that uV = Uy, that is a = 0. We prove the claim. Indeed, rescaling
(3.26) and (3.27) yields

/ Galhdoy, < [ (i,

ro'exp;! (Bexpmauux)(m)) Bo(1)

for all z € R™ and « large enough. Since the exponential map is a normal chart
and is an isometry at z,, we get that for all z € R"® and all ¢ > 0

exp, (roB:(1—¢€))C Bexpza(raz)(ra)-

Plugging these two inequalities together and letting o — 400, using the strong
convergence (3.31), we get that [ N 2 dz < JBo) [uN|% dz. Letting ¢ — 0

yields
/ |uN|2i dx < / |uN|2nk dz.
B.(1) Bo(1)

As one checks, since vV = Ux,q, where Uy , is as in (3.6), the maximum of the

left-hand-side is achieved if and only if z = a. Therefore ¢ = 0 and vV = U 2,0
This proves the claim.

As a consequence, as one checks, when r;'d(z,,0M) — +00 as a — +oo, the
bubble rewrites

—1
exp, “( ATq
By o (W) = Bay ar, (Ur0) =1 ( ~a( )> On,k ( )

o N2+ dy ()

We fix N € {1,...,d}. We claim that (r))~td(z},0M) — +o0o as a — +oo. We
argue by contradiction and we assume that the limit is finite. We argue as in the
case above. Up to rescaling, and using the boundary chart (3.7), we get that wu,

:
goes to u® strongly as o — 400 in Lifc(]R”\S), where S is finite. Therefore v is a
nonegative nonzero weak solution to (3.3), contradicting Lemma 3 in Ge-Wei-Zhou

[7]. Therefore the limit is infinite and we are back to the previous case.

n—2k
2

All these steps prove Theorem 3.2.
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Part 2

Asymptotic Analysis of a
Hardy-Sobolev elliptic equation
with vanishing singularity






CHAPTER 4

Blow-up Analysis For a Sequence of Solutions of
the Critical Hardy-Sobolev Equations

4.1. Introduction

Let Q be a bounded smooth oriented domain of R™, n > 3, such that 0 € 0.
We define the Sobolev space H7 () as the completion of the space Cg°(Q), the
space of compactly supported smooth functions in 2, with respect to the norm

s o = [ (VP dz
Q

We let 2* := 2% be the critical Sobolev exponent for the embeding H?o(Q) —
L?(Q). Namely, the embedding is defined and continuous for 1 < p < 2*, and it is
compact iff 1 < p < 2*. Let a € C1(Q) be such that the operator A + a is coercive
in , that is, there exists a constant Ay > 0 such that for all ¢ € Hf ()

(4.1) /<|Vg0\2 +ag02) dz > AQ/QDQ dz

Q Q

Solutions u € C?(f2) to the problem

Au+a(z)u=u>"" inQ
u>0 in
u=20 on 0N

(often referred to as "Brezis-Nirenberg problem”) are critical points of the func-
tional
J(IVul* + au? ) dz
U — Q s

372
<f|u 2 dx)
)

and a natural way to obtain such critical points is to find minimizers to this func-
tional, that is to prove that

[ ([Vul]? + au? ) da
(4.2) 1a(Q) = inf 2

weH?  (Q)\{0} 2/2*
ne (fu 2% dx)
Q

is achieved. There is a huge and extensive litterature on this problem, starting
with the pioneering article of Brezis-Nirenberg [4] in which the authors completely
solved the question of existence of minimizers for j1,(Q2) when a = C** and n > 4
for any domain, and n = 3 for a ball. Their analysis took inspiration from the

81
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contributions of Aubin [2] in the resolution of the Yamabe problem. The case when
a is arbitrary and n = 3 was solved by Druet [5] using blowup analysis.

In [10], Ghoussoub-Yuan suggested to approach the minimisation problem by adding
a singularity in the equation as follows. For any s € [0,2), we define

2(n —s)
2"(s) i = ———=
so that 2* = 2*(0). Weak solutions u € H7 ((22)\{0} to the problem
Au+ a(z)u = “2‘;‘>_1 in Q
u>0 in Q
u=0 on 0f.

Note here that 0 € 9Q is a boundary point. Such solutions can be achieved as
minimizers for the problem

[ (IVul]? + au? ) dx
Q

inf
uweHZ ,(2)\{0} 2" () . 2/2%(s)
g{ e 4

Consider a sequence of positive real numbers (s.)eso such that lir% se = 0. We let
€E—

(ue)eso € C? (Q\{0}) N C* (Q) such that

(4.3) Hs,a(2) = for s € (0,2)

w2 -1

Aue + aue = RFiE: in Q,
(4.4) ue >0 in Q,
u. =0 on 0f).

Moreover, we assume that the (u.)’s are of minimal energy type in the sense that
[ ([Vue® + au? ) dx
Q

(4.5) 1)

1
>2/2*(s€) = ps.,a(©) < Km.0) +o(

e [2% (50)
Q

as € — 0, where K (n,0) > 0 is the best constant in the Sobolev embedding defined
in (4.6). Indeed, it follows from Ghoussoub-Robert [8,9] that such a family (u.).
exists if the the mean curvature of 92 at 0 is negative.

In this chapter, we are interested here in studying the asymptotic behavior of the
sequence (uc)eso as € — 0. As proved in Proposition 4.3.2, if the weak limit ug
of (ue)e in HY ((€2) is nontrivial, then the convergence is indeed strong and ug is
a minimizer of 1,(€2). We are dealing here with the more delicate case ug = 0, in
which blow-up necessarily occurs. In the spirit of the C°—theory of Druet-Hebey-
Robert [6], our first result is the following:

Theorem 4.1. Let §2 be a bounded smooth oriented domain of R", n > 3 ,
such that 0 € 0%, and let a € C*(Q) be such that the operator A + a is coercive
in Q. Let (S¢)eso € (0,2) be a sequence such that lir% se = 0. Suppose that the

€E—>

sequence (Uc) o € HT o(Q), where for each € > 0, u. satisfies (4.4) and (4.5), is a
blowup sequence, i.e

ue —0 weakly in Hf () as € =0
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Then, there exists C' > 0 such that for all e > 0

n—2

He
Ue(l') S C <ME—|—|:)§—{L’E2> fO’I" all z € Q

where
pe 7 = ue(ze) = maxue(z).

With this optimal pointwise control, we are able to obtain more informations
on the localization of the blowup point zg := lim._,o zc and the blowup parameter
(e)e- We let G* = Q x Q\ {(z,z) : x € Q} — R is the Green’s function of the
coercive operator A + a in  with Dirichlet boundary conditions. For any x € Q
we write G as:

1

Gi(y) = ) R P T +9z(y)

where wy_1 is the area of the (n — 1)- sphere. In dimension n = 3 or when a = 0,
one has that ¢g¢ € C?(Q\ {z}) N C%?(Q) for some 0 < § < 1, and g* is called
the regular part of the Green’s function G*. In particular, when n = 3 or a = 0,
mz (2, a) = g%(x) is defined for all € Q and is called the mass of the operator
A +a.

Theorem 4.2. Let Q be a bounded smooth oriented domain of R", n > 3,
such that 0 € 99, and let a € C1(Q) be such that the operator A + a is coercive
in Q. Let (S¢)eso € (0,2) be a sequence such that lin% se = 0. Suppose that the

e—
sequence (Uc),o € HT o(Q), where for each € > 0, u. satisfies (4.4) and (4.5), is a
blowup sequence, i.e

ue —0 weakly in HY () as €—0
We let (p1e)e € (0,400) and (z¢)e € Q be such that

_n=2
e 2 :ue(xe):glggz(ue(x)

We define xg := lim._,o x. and we assume that
xg € § is an interior point.

Then
Se % _2*
1 _— = *— >
1£I(l) ” 2°K(n,0)>-2d, a(zo) for n>5
1 76 == 2 =
lgr(l) 1 ZTog (/1) 256w3 K (4,0)° a(xo) for n=4

= —nb?2K(n, O)”/2gfj.0 (zo0) forn =3 ora=0.

lim — 5
e—0 'u?_
where g3 (xo) the mass at the point xo € Q for the operator A + a, where

1 1
dn:/ dr forn>5; b, = — dx

|| n2 |z|? 2
Rn (1 + n(n72)) Rm (1 + n(n—2)>

and ws is the area of the 3- sphere.

When xg € 012 is a boundary point, we get similar estimates:
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Theorem 4.3. Let § be a bounded smooth oriented domain of R", n > 3,
such that 0 € 99, and let a € C1(Q) be such that the operator A + a is coercive
in Q. Let (S¢)eso € (0,2) be a sequence such that lirr(l) se = 0. Suppose that the

€E—r

sequence (Uc),o € HT o(Q), where for each € > 0, u. satisfies (4.4) and (4.5), is a
blowup sequence, i.e

ue — 0 weakly in HIQ’O(Q) as € —0
We let (p1e)e € (0,400) and (z¢)e € Q be such that
n—2
—t5 —
He = Uc(Te) = r;léaé{"%(x)

Assume that
lim z, = zg € 0N2.
e—0
Then
(1) If n=3 ora=0, then as € = 0
m sed(ze, 0)"2  n"Hn —2)" 1K (n,0)" 2w,

li
e—0 /1272 on—2

Moreover, d(ze,0Q) = (1 + o(1))|z| as € = 0. In particular xo = 0.

(2) If n=4. Then ase — 0

2

% (K (4,002 + 0(1)) — (M) (32ws + 0(1)) = i log (d(x“m)
(3) If n>5. Then ase — 0

2 (0 00) - () (S ) st 20

where

) [64wsa(xg) + o(1)]

€

1
dn:/ —5 dx forn>5
(o )
R™ n(n—2)

Theorem 4.3 is a particular case of Theorem 4.10 proved in Section 4.8.

The main difficulty in our analysis is due to the natural singularity at 0 € 9.
Indeed, there is a balance between two facts. First, since s, > 0, this singularity
exists and has an influence on the analysis, and in particular on the Pohozaev iden-
tity (see the statement of Theorem 4.2). But, second, since s, — 0, the singularity
should cancel, at least asymptotically. In this perspective, our results are twofolds.

Theorem 4.1 asserts that the pointwise control is the same as the control of the
classical problem with s, = 0: however, to prove this result, we need to perform
a very delicate analysis of the blowup with the perturbation s, > 0, even for the
initial steps that are usually standard in the case s = 0 (these are Sections 4.4 and
4.5).

The influence and the role of s, > 0 is much more striking in Theorems 4.2 and
4.3. Compared to the case s, = 0, the Pohozaev identity (see Section 4.7) enjoys
an additional term involving s. that is present in the statement of Theorems 4.2
and 4.3. Heuristically, this is due to the fact that the limiting equation Au =
|| =% (*)=1 is not invariant under the action of the translations when s > 0.
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Some classical references for the blow-up analysis of nonlinear critical elliptic pdes
are Rey [16], Adimurthi- Pacella-Yadava [1], Han [11], Hebey-Vaugon [13] and
Khuri-Marques-Schoen [15]. The analysis of the 3D problem by Druet [5] and the
monograph [6] by Druet-Hebey-Robert were important sources of inspiration.

This chapter is organized as follows. In Section 4.2, we recall and prove some
general facts on Hardy-Sobolev inequalities. In Section 4.3, we prove a few useful
general and classical statements. Section 4.4 is a long section devoted to the proof
of convergence to a ground state up to rescaling. In Section 4.5, we perform a
delicate blow-up analysis to get a first pointwise control on u.. The optimal control
of Theorem 4.1 is proved in Section 4.6. With the pointwise control of Theorem
4.1, we are able to estimate the maximum of the u.’s when the blowup point is in
the interior of the domain (Section 4.7) or on the boundary (Section 4.8).

4.2. Some results on Hardy, Sobolev and Hardy-Sobolev inequalities
on R"

The space 212(R") is defined as the completion of the space C2°(R™), the space
of compactly supported smooth functions in R™, with respect to the norm

lul2 = / Vuf? da
Rn

The embedding 2'2(R") — L? (R") is continuous, and we denote the best con-
stant of this embedding by K (n,0) which can be characterised as

) [ |Vul? dx
4.6 = inf R
(46) K(n,0)  ueo ({0} 2/2
( [ ul? dm)
R’!L
We have for all u € 2%2(R")
(4.7)
2/2"
/|u(x)\2 dx < K(n,0) /|Vu|2 dx The Sobolev inequality
R7 Rn

We start with the following well known results. Proofs are included for completeness

Lemma 4.2.1.
(i) For any u € 2V2(R™) one has

2 2 2
(4.8) |U|SC2 dx < <n—2> /|Vu|2 dx The Hardy Inequality
R’Vl R"'L

(ii) There exists a constant Cs > 0 such that for all u € 2V2(R™) one has

2/2%(s)

Ju(z)[>®) 2 :
T dx < Cgs |Vul® dx The Hardy-Sobolev Inequality
Rn R'ﬂ/
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PRrROOF. By density it is enough to consider u € C°(R™). For a x € R™ we
have

—+oo

u@p =~ [ (o)) at

1
+oo

=-2 / u(tx) (Vu(te), z) dt

1

By Fubini theorem we then have

/ quai’gIQ _ 9 70/ L]S“;) (Vu(tz),z) dz dt

R 1 R»

_ o 7;[ u(tz) <Vu(tx), |5|2> du dt
— 2 :/Ootnl_l dt x /u(m) <Vu(x),|;2> da

fin
_ _”32]1%[1?) <Vu(x),|i> dx

Using Holder inequality we obtain that

1
|u(z)? 2 Ju(z)|? / 2
<
BE dzx < p— PFE dx [Vu(z)|® dx
R~ R® R

Therefore
|u(@)[? 2\’
FE dzx < — /|Vu(x)|2 dz

R R~

and we have the Hardy inequality.

Now for u € 2'2(R™) we have

25
/|u( | () |U |2 s)sd

|z]®
]Rn
s/2 255
2
- |UIE:|2| i / (@) da by Hélder inequality
Rn' R’VL
2% (s)/2

_ 2 \°

< K(n,0)22 noz (n 2) /|Vu(gc)|2 dx

R7L
by Hardy inequality (4.8) and Sobolev inequality (4.7)
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Hence we have obtained that for all u € 212(R")

ro ) 23/2" (5)
s n(2=s 2 o
/ “@'S do < [mmo)?(fls) (n - 2) / Vu(2)|? d
R R
This completes the lemma. (I
We let
) [ |Vul? dz
(4.10) = i L

inf P
K(n,s)  ue212(&n)\{0} ( [ o )2/2 ()
R

Proposition 4.2.1.
lim K(n s) = K(n,0)

s—0

PROOF. Let u € 212(R™). In lemma 4.2.1 we have obtained

/2 (s) D) 25/2%(s)
(%)
n —

/[u(rﬂ2*@9 dx < l}{(n 0)%(
s 25/2%(s)
K(n,s) < K(n,0)3(3) (,fz)

/|Vu )|? dx

Letting s — 0, one has
limsup K (n, s) < K(n,0)

s—0

Next by Fatou’s lemma

/|u NES dm<hm1nf/‘u -
|9U\

And so
2 ) 27(s)/2
/|u ) x<hm1nf/ [ulz ‘ xglimi(r)lf K(n,s)? (9)/2 /|Vu|2 dx
s—
R’Vl
2/2"
/|u(m)|2* dx < (11211_}51fK(n,s))/\Vu|2 dx
R Rn
Therefore
< Tim
K(n,0) < hgn_}élfK(n, s)
Hence

lim K(n s) = K(n,0)

s—0
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4.3. Hardy-Sobolev inequality on 2 and the case of a nonzero weak
limit
Recall that 2 is a smooth bounded domain of R™, n > 3. We then have the
following useful proposition:

Proposition 4.3.1.
lim .US,a(Q) = 1a(92)
s—0

PROOF. Let u € H{((€2)\{0}. One has

2"(s) .

|z|® el IS
Q
s/2 2_s
2
< |U|Ejg| dx / u(z)[? by Holder inequality
Q R™
s/2 %
2 S
= ( 2) /|VU(1’>|2 du /|u($) ? by Hardy inequality (4.8)
n—
Q2 Q

So

2/2* (s /2% (s 2-s

u(a |2() /27(s) 2 25/2%(s) /27 (s) * 2
/ dx < /IVu )|? dx /lu(x)|2 da
|| n—
Q

And hence
[ (IVul® + au?) dz J (IVul]? + au?) dzx $/2%(s)
Q2 Q

9 2s/2"( ) .
o < 7w | (s [t as u(e)|” de
(f|u|2* dSC) <f ‘U‘I;‘S(S) ) Q
Q

which, by Sobolev inequality (4.7) gives that for all u € Hf o(2)\{0}

J (IVul]® + au?) dzx [ (Vul? + au?) dz g2
Q Q 1 2 n—s
) 2/2%  — 2 ) 2/2%(s) (K(m 0)1/2* n — 2)
(e (5 )

So

1 2\ °ns
0) < Q

Passing to limits as s — 0, one obtains that

S
#a($2) < lim inf i 4 ()
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Let u € H?;(2)\{0}. By Fatou’s lemma one has
27(s)/2

2% (s)
/|u )z x<hm1nf/u dx<11m1nf —|—au2) dx

Q
2/2*
/|u )2 da < hmmf / (|IVul]® + au?®) dz
Q
Therefore
1
lim inf >
s—0 /"s,a(Q) o /”'a(Q)
And so
lim sup fes,4(2) < pa(£2)
s—0
Hence

lim 1154 (2) = p1a(€2)
s—0

We now prove the following proposition for nonzero weak limits:

Proposition 4.3.2. Let Q be a bounded smooth oriented domain of R™, n > 3
, such that 0 € 9Q. Let a € CY(Q) be such that the operator A + a is coercive
in Q Let (uc)eso € C? (Q\{0}) N C* (Q) be as in (4.4) and (4.5). Then there
exists ug € Hio(Q) such that ue — ug weakly in H?o(Q) as € — 0. Indeed,
ug € C% (Q\{0}) NC* (Q) is a solution to

A’LLO + aug = U(Q)*_l m Q
ug >0 in Q,
ug =0 on 0f)

If ug # 0, then uy > 0 in Q and
S ([Vuol|? + aud ) da
Q

2/2
(f|u02* das)
Q

Therefore jiq(S2) is attained. Further ue — ug in Hf 5(€2), as e = 0.

Ha(§2) =

PrOOF. First, from the coercivity of the operator A + a it follows that the
sequence (uc)eso is bounded in Hf ((Q), i.e

(4.11) el gz ) = O(1)  ase—0

Then from the weak compactness of the unit ball in Hio(Q) it follows that there
exists ug € Hf ;() such that upto a subsequence, as € — 0

Ue — Ug weakly in H7 (€2)
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Andsoas e — 0

Ue — Ug weakly in L% ()
(4.12) Ue —> U strongly in LP(2) for 1<p<2*
ue(x) = up(x) a.e x in €

In particular, for any ¢ € C2°(Q)

/((Vue, V) + aucp) de — /((Vuo7 V) + aupp) dx ase—0

Q
2% (se)—1

2" (sc)
u . . u
One has that ]T —uj ~'a.einQase — 0and the sequence <€|S>
x| x|se
e>0

is bounded in L% 7=1 (Q) for some g < 1 sufficiently small. So by integration theory

2(3
/ BT <pda:—>/2_1

Therefore ug is a weak solution of the equation

Aug + aug = u%*_l in Q
(4.13) ug >0 in Q,
ug =0 on 02

It follows by the regularity result in Ghoussoub-Robert [8], [9] that ug € C* (Q2\{0})N
C! (Q). Multiplying both sides of eqn (4.13) by ug gives that

/ (Vo + aud) de = /u%*d:c
R~ Q
So if ug # 0 it follows from the definition (4.2) of 1, (£2) that

/ug*dx > o (Q) 72
Q

Since u. — ug weakly in Hio(Q) as € — 0, using the Fatou’s lemma one has

2% (se)
/|U0( ) dﬂc<llm1nf/ [uo( |

Q
From (4.4) and (4.5), we have

NENSS, 2* (s¢)
/ |ue | dr = M"Sma(S))m

|[>

This together with proposition 4.3.1 gives that

/|u0|2* d < ()7
Q
Hence

/ lul?” dar = pa ()52
Q
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And so

/ (IVuol? + aug) do = ua(Q)ﬁ
Rn

Therefore we obtain if ug # 0

gfz( |Vuo|? + aud ) dx

22+
<f|u0|2* d:c)
Q

Ve = Ue — U

= 1a(82)
Let

Then as € — 0

ve =0 weakly in H7 ((€2)

ve =0  weakly in L2 (Q)

ve = 0 strongly in LP(2) for 1 <p<2*
ve(z) = 0 a.e x in

We have

/ (|[Vue|® + au?) do = / (|Vuol?* + aug) dz + / (|Vve|?> + av?) dz + o(1) as € — 0
En En En

If Ug 7é 0 then

2" (se)

fhs, a(Q)TTO2 = MG(Q)% + / |Vue|? dz + o(1) ase— 0
R

Letting e — 0 and using proposition 4.3.1 we obtain that

lim/|Vv6|2 dr =0
e—0
RTL

And therefore

Ue — U in Hfo(Q) ase—0

4.4. Preliminary Blow-up Analysis
We let (ue) be as in Theorem 4.1. We will say that blowup occurs whenever
ue — 0 weakly in HIQ,O(Q) as € —0

We describe the behaviour of such a sequence of solutions (u.). By regularity, for
all €, u. € C°(Q). We let x. € Q and p > 0 be such that :

(4.14) ue(Te) = A e (z) and pe 2 =u(xe)

This section is devoted to the proof of the following theorem:
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Theorem 4.4. Let § be a bounded smooth oriented domain of R", n > 3 ,
such that 0 € 99, and let a € C1(Q) be such that the operator A + a is coercive
in Q. Let (S¢)eso € (0,2) be a sequence such that lirr(l) se = 0. Suppose that the

€E—r

sequence (Uc),o € HT o(Q), where for each € > 0, u. satisfies (4.4) and (4.5), is a
blowup sequence, i.e

ue — 0 weakly in le,o(ﬂ) as € =0

We let (xc)e, (fte)e be as in (4.14). Let k. be such that

2—se

(4.15) ke = ||/ pe 2 fore>0
Then
Q Q
lim g = lim k. = 0 and lim M = lim d(ze,00) _ +o00
e—0 e—0 e—0 e e—0 ke
We rescale and define
e\Le ke Q_ €
ve(x) := W forz e kzex

Then there exists v € C°(R™) such that v # 0 and for any n € C°(R™)
NVe — NV weakly in 2%*(R™) ase—0
Further for all x € R™ v(x) <v(0) =1 and it satisfies the equation
{ Ay =21 in R™

v>0 n R”
One has
(4.16)
n—2
2 2"
1 n 2 1 e
v(z) = W forz e R and |Voul* dx = Kn.0)
n(n—2) Rn
Also
Ve — 0 in CL(R™) as € =0
and, moreover upto a subsequence, as € — 0
€ e kﬁ
(4.17) <“ ) 51 and —= 1
|xe| He

The rest of the section is devoted to the proof of Theorem 4.4. It goes through
four steps.

Step 1: We claim that
e = o(1) and k. = o(1) as e =0
PRrROOF. We proceed by contradiction. Suppose
lim pe #0
e—0
Then by our definition (4.14) this implies that for for all e
”ué”LOO(Q) <C
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2% (se)—1
for some positive constant C. Therefore uéis is uniformly bounded in LP()

for some p > n . Then from eqn (4.4) and standard elliptic estimates (see for
instance [14]) it follows that for all €

||u€||cl,a(ﬂ) <

for some positive constant C” and o € (0,1). Hence the sequence (u,) is precompact
in the space C*(€). Since u. — 0 weakly in H{ (), therefore uc — 0 in C*(Q),
as € — 0.

From (4.4)and (4.5) we obtain that

/ uc(z

But if uc — 0 in C1(Q) as € — 0, then this implies that
lim ﬂse,a(Q) =0
e—0

2" (se)

|2 (se)
dz = ps, o(Q)TCGa—2

And therefore i, (2) = 0, a contradiction since the operator A + a is coercive in
Q. So, we must have that liII(l) e = 0. The result for k. follows from the definition.
€E—

This ends Step 1. O

We let
R ={z eR": 2, <0}
where ;1 is the first coordinate of a generic point in R™. This space will be the

limit space in certain cases after blowup. We describe a parametrisation around a

point of the boundary 9. Let p € 0. Then there exists U,V open in R™ and
a smooth diffeomorphism 7 : U — V such that upto a rotation of coordinates if
necessary

(4.18)
o cUandpeV
e T(0)=p
e T(UN{z1<0})=VnNAN
o T(UN{x1=0}H)=VnNoQ
e DyT =Irn. Here D, T denotes the differential of 7 at the point x

and Iz~ is the identity map on R™.

o T.(0) (e1) = v, where v, denotes the outer unit normal vector to
0f) at the point p.

o {T.(0)(e2), -+, (Tm),(0)(e,)} forms an orthonormal basis of
T,090.

Step 2: We claim that

||

(4.19) lim
e—0 [Ue

:+OO

PROOF. Suppose on the contrary
|

=0(1) as e — 0
e
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Then

lim |z =0
e—+o00

Let 7o:U — V be a parametrisation of the boundary as in (4.18) at the point
p=20. For all € > 0, we let
e o To(prex)

Ve(z) = (2

Step 2.1: For any n € C2°(R"™), one has that no. € 212(R™) for € > 0 sufficiently

U
forxeu—ﬂ{xl <0}

small. We claim that there exists o, € 22(R") such that upto a subsequence
NVe — U,y weakly in 212(R") as e — 0
N0 () — Op(x) aex inR"” ase—0

We prove the claim. Let x € R™, then

V (13.) () = b (@) Vi(z) + —<

ue(xe)

For any 6 > 0, there exists C(f) > 0 such that for any a,b > 0

() D,y To [Vue (To(pew))]

(a+b)2 < C(0)a® + (14 6)b*

With this inequality we then obtain
2
. - e 2
J IV s <o) [ 19nPez ot (140 [ Dy To [V (To(uea))f o
R" R" T En

Since DTy = Ig» we have as € — 0

2
/ IV ()| dz < C(6) / Vnl202 d + (14 6) (1 + O(u)) / 7 (Ve (To(ea))2 (1 + o(1))dx
R™ R™

Ue (xe)

n

With Hélder inequality and a change of variables this becomes

(4.20)
/ ¥ ()2 de < C(0) [Vl / W dr| 4 (146 (14 O() / Ve da

Now since ||u€HH§0(Q) =0(1) and pe — 0 as € — 0, so for € > 0 small enough

”7766”_@112(]1%71) <y,

Where C), is a constant depending on the function 1. The claim then follows from
the reflexivity of 212(R").

Step 2.2: Let 7 € C*(R™), 0 <1y <1 be a smooth cut-off function, such that

_J 1 for =z € By(l)
(4.21) = { 0 for ze€R"\By(2)

For any R > 0 we let ng = n1(x/R). Then with a diagonal argument we can assume
that, upto a subsequence for any R > 0 , there exists g € 2%2(R") such that
NRrUe — UR weakly in 212(R™) as e — 0
NrU(z) = Ur(x) aex iInR™ ase—0
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Since ||V77R|\i = ||V771Hi for all R > 0, letting € — 0 in (4.20) we obtain that

/ |Vig|?de < C  forall R>0
R™

where C is a constant independent of R. So there exists ¥ € 2%2(R") such that

Ip — 0 weakly in 212(R") as R — oo
Or(z) = 0(x) aezx inR" as R — oo

Step 2.3: We claim that & € C'(R™) and it satisfies weakly the equation

Ap =¥t in R™
=0 on {z; =0}

We prove the claim. Fori,j =1,...,n, welet g;; = (0;70,0;70), the metric induced
by the chart Ty on the domain UN{z; < 0} and let A, denote the Laplace-Beltrami
operator with respect to the metric g. We let

Ge = g (pex)

From eqn (4.4) it follows that for any € > 0 and R > 0, ng¥. satisfies weakly the
equation

~ \2%(se)—1

(b 53 (00 122 (a0 Toljaew) (maehe) = Cfgiim in Bo(R) N {1 < 0}

NRrUe =0 on By(R)N{zx; =0}

Now 0 < 9. < 1 and from the properties of the boundary chart 7y, it follows that
for any p > 1 there exists a constant C,, such that

. P
(nRﬁe)Q (st 1
/ To(ue) | <Gy |z|P de

Bo(R)N{z1<0} He Bo(R)N{z1<0}

So the right hand side of equation (4.22) is uniformly bounded in L? for some p > n.
Then from standard elliptic estimates (see for instance [14]) it follows that the
sequence (ng¥e) s is bounded in C**0 (By(R) N {xzy < 0}) for some o € (0,1).
So by Arzela-Ascoli’s theorem one has that 9r € CY (Bo(R/2) N {z; <0}) for
0 < a < ag, and that, up to a subsequence

lim npo. = g in CY* (By(R/4) N{zy <0})

e—0

for 0 < a < ag. And therefore

(4.23) IR=0 on By(R/4) N{x1 =0}

Letting ¢ — 0 in eqn (4.22) gives that Up satisfies weakly the equation
o {ARZET BN

Again we have that: 0 < 0p < 1, then again from standard elliptic estimates and
applying the Arzela-Ascoli’s theorem it follows that o € C*(R™) and RliIE Up =10
— 400



96 4. BLOW-UP ANALYSIS

in C}.(R™) up to a subsequence and also thatR1_i)r_1~_1oo Up=0in H 12 1oc(R™). Letting
R — +o00 we obtain

Ap=p> 1 in 7'(R")
This proves our claim and ends Step 2.3.

Step 2.4: we now conclude to prove (4.19). Let &, € U be such that To(Z.) = ..
Then for all € > 0
()
He

From the properties (4.18) of the boundary chart 7y it follows that, for all € > 0

|Ze -0 <|me|)

fhe [he

||

So if == = O(1) as € — 0, then there exists # € R” such that
e

Le — ase—0
He
For R > 0 sufficiently large we have

() =l () (24 ) =1

e—0
and therefore

8() = Jim_oa(p) = 1

From Step 2.3, it follows that & € R™. But then this implies ¥ € C'(R™) is a
nontrivial weak solution of the equation
Ap =2 1 in R™
=0 on {z; =0}
which is impossible, see Struwe’s book [18] (Chapter III , theorem 1.3). Hence one

must have that

lim Jz] = 400

e—0 e
This completes the proof of (4.19), and therefore Step 2. O
Step 3: We claim that
d(xze, 00
(4.25) lim %0 _ |
e—0 ke

PROOF. We proceed by contradiction and assume that
d(z.,00)

e =0(1) ase—0

Then we have that

limz, = xg € 0N
e—0
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Step 3.1: Let 7 be a parametrisation of the boundary 92 as in (4.18) around the
point p = z¢. For all € > 0 let

Ue =U 0T on UN{z; <0}

Fori,j=1,...,n, welet g;; = (0;T,0;7T) be the metric induced by the chart 7 on
the domain U N {z; < 0}, and let A, denote the Laplace-Beltrami operator with
respect to the metric g.

From eqn (4.4) it follows that for any € > 0, 4, satisfies weakly the equation

aQ*(Se)*l

Aﬂe—&—QOT(m)ﬂe:W in UnN{z; <0}

e =0 on UN{x; =0}
Let z. € 09 be such that
|ze — x| = d(x, 00) fore >0
And let Z., Z. € U be such that
T(Ze) = ze and T(Ze) = ze
Then it follows from the properties of the boundary chart 7, that
limg =0=limz, (&)1 <0 and (3); =0
For € > 0 we set

NE NC kﬁ
5 = Ue (2 —|: x)

for z € U— %
ﬂe(xe) €

ﬁ{:cl SO}

Step 3.2: For any n € C2°(R"), one has that 7o, € 2V2(R") for € > 0 sufficiently
small. Let x € R™ then

V (noe) () = ve(x) Vi (x) + @)Dz k)T [Vue (T (Ze + k)]

L
Ue(ze)
One has the inequality : For any 6 > 0, there exists C'(6) > 0 such that for any
a,b>0

(a+b)2 < C(0)a® + (14 6)b*

With this inequality we then obtain

u?(xe)

R™

]C2
/ IV (i)l de < C(60) / V25 de 4 (14 6) e / W Do nyT [Vte (TG + k)| de
R™ R™

Since DyT = Ign, we have as € — 0

[ 19 @ de <) [ 19762 de+ (04 0) 1400+ k) k[ 47 [V (TG + k) 1+ o1
R" T gn

R™

With Holder inequality and a change of variables this becomes

n—2
n

n—2
vl a<co (5 1val. | [ i
R™ ‘

n—2
fre +(1+0)0(k,) (’;) /|vu42 do
Q € R™
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Then by our definition (4.15) and Sobolev inequality (4.7) we obtain for € > 0 small

enough
/\V(nﬁe)f dx < [C(a) V07, +(1+9)0(k6)] (’;) /|we|2 dx
RW € R’n
(4.26) < [c® IVall, + 1+ 0)00)] [ 190l do
]R'n.
. ozl
since lim =400 by eq. (4.19)

e—=0 [le
Now Hu5||H%O(Q) =0O(1) and k. — 0 as € — 0, so for € > 0 small enough
||77776||@112(]R7_L) <y

Where C), is a constant depending on the function 5. It then follows that there
exists v, € 21?(R™) such that upto a subsequence

Ne — Uy weakly in 212(R") ase— 0
N0 () = Oy(2) aezx inR" ase—0
Step 3.4: Let n € C°(R™), 0 < n; <1 be a smooth cut-off function, such that

[ 1 for ze€ By(l)
M= 0 for zeR™By(2)

For any R > 0 we let ng = n1(x/R).Then with a diagonal argument we can assume
that, upto a subsequence for any € > 0 , there exists oz € 2V?(R") such that

NRUe — TR weakly in 2V2(R™) ase—0
NRVe — UR a.e inR” ase—0

Since |[Vnr|> = |V 2 for all R > 0, letting € — 0 in (4.26) we obtain that
/ |Vig|°de < C  forall R>0
R™

where C'is a constant independent of R. So there exists o € 21?(R™) such that

Ip — 0 weakly in 212(R") as R — oo
Or(z) = 0(x) aezx inR"™ as R — oo

Step 3.5: We claim that o € C'(R™) and it satisfies weakly the equation
{ Ap =921 in R™

=0 on {z; =0}
Then from equation (4.4) it follows that for any € > 0 and R > 0, nr?. satisfies
weakly the equation

<

Let
Jge=9 (25 + kex)

)2*(56)71

A (nrie) + k2 (a0 T (3 + kew)) (nrie) = WYderr—  in Bo(R) N {z1 < 0}

(4.27) el
NrU. =0 on By(R) N {xy =0}
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From the properties of the boundary chart 7 it follows that for e > 0 small
T (Ze + k) = e + Op(1)ke for x € Bo(R) N {z; <0}

where
Or(1)| < Cr
k 2-se
for some Cr > 0. Using eq. (4.19) we obtain lim —— = lim He )~ 0. S0
e—0 ‘xe‘ e—0 |CCE‘
. T(ge + kex) Se . 0
= <
llir(l) |:,C€| 1 in C (Bo(R) N {.131 =~ O})

Equation (4.27) then can be written as
A (pb) + k2 (a0 T (Fe + ke)) (nrte) = (1 + o(1)) (ngoe)? “ 7! in By(R) N {z < 0}
(4.28)
with NrUe =0 on By(R)N{z; =0}
where lir% o(1) =0 in C° (Bo(R) N {z1 < 0}).
e—

Since 0 < 9, < 1, it follows from standard elliptic estimates (see for instance [14])
that the sequence (ngr¥e),- is bounded in C?0 (By(R) N {x1 < 0}) for some o €
(0,1). So by Arzela-Ascoli’s theorem one has that 9 € C* (Bo(R/2) N{x; <0})
for 0 < a < a, and that, up to a subsequence

lim npo. = g in C* (By(R/4) N{zy <0})

e—0

for 0 < a < . And therefore
(4.29) R =0 on By(R/4) N{xy =0}
Letting € — 0 in eqn (4.28) gives that v satisfies weakly the equation
{ Avg = 0% ! in Bo(R/4) N {x; <0}
or =0 on By(R/4)N{x; =0}

Again we have that: 0 < 0 < 1, then again from standard elliptic estimates and
applying the Arzela-Ascoli’s theorem it follows that o € C*(R™) and RliIE Up =10
— 400

in C}

loc

(4.30)

(R™) up to a subsequence. Moreover letting R — 400 we obtain that
Ap =321 in 7'(R")
This proves our claim and ends Step 3.5.

Step 3.6: we know conclude Step 3. We have that

e — Ze
5. 1
U < ke )

From the properties (4.18) of the boundary chart T it follows that, for all € > 0
|Te — Ze| |Te — 2
e 7 el _ o[ e —=el
ke ke

= O(1) as € — 0, then there exists # € R” such that

d(x.,00)

So if
oi .

Te — Ze

ke

— T as € — 0
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For R > 0 sufficiently large we have

or(2) =l () (7

ST
A
)
N———
I
—

and therefore

5(@) = lim 9r(¥) =1

From Step 3.5, it follows that & € R™. But then this implies © € C1(R") is a
nontrivial weak solution of the equation
Ap =32 ! in R™
=0 on {z; =0}

3

which is a contradiction, see Struwe’s book [18] (Chapter III , theorem 1.3). This
completes the proof of (4.25) and ends Step 3. O

Step 4: we are now in position to prove Theorem 4.4. Note that the preceding
step yields

lim d(xe, 00)

e—0 ke =t

Step 4.1: For any n € C°(R"), one has that nv. € HZ(R™) for € > 0 sufficiently
small. We claim that for any n € C2°(R"™), there exists v, € #22?(R") such that
upto a subsequence

NVe — Uy, weakly in 212 (R") ase—0

Let x € R™, then for ¢ > 0

V (nve) () = veVn(z) + u:% ke n Vue(ze + kex)

One has the inequality : For any 6 > 0, there exists C'(6) > 0 such that for any
z,y >0

(z+y)? <CO)2* + (1+0)y?
With the help of the above inequality we then obtain
J IV el de <€) [ 1902 dot (14 0222 [ P [Vuclo+ k) do
RTIV R’VL R’Vl

With Hélder inequality and a change of variables this becomes

n—2

n—2
[t a< (f) o v, | [ a
Rn

€
Rn

(4.31) +(146) (’;)H/ (n (‘”;fe>>2|vue|2 do

Rn
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By the Sobolev inequality (4.7) and our definition of ke, we obtain for ¢ > 0 small

enough
)71'2236/ 5
|[Vue|” dx
RTL

< [COIvalE. + @+ 0)supr?] [ 9 do
RTI

fie
el

J 19 ol do < [CO 190l + 1+ 0)supe?] ( -
J

. A
since lim

e—0 [l

Now Hu5||H%O(Q) =0O(1) and k. — 0 as ¢ — 0, so for € > 0 small enough

=400 by eq. (4.19)

”771)5”91,2(Rn) < Cﬁ

Where C), is a constant depending on the function 7. It then follows that there
exists v, € 21?(R") such that upto a subsequence

{ NVe — Uy weakly in 212(R") as e — 0

(4.32) ne(x) — vy(x) aex nR"™ ase—0
This proves the claim and ends Step 4.1.

Step 4.2: We claim that there exists v € 2%2(R") such that for any n € C2°(R")
we have

vy =N
Let 1 € C°(R™), 0 <y <1 be a smooth cut-off function, such that

[ 1 for =z € By(l)
M= 0 for zeR™By(2)

For any R > 0 we let ng = n1(xz/R). Then with a diagonal argument we can assume
that, upto a subsequence for any € > 0 , there exists vgp € 2%2(R") such that

NRVe — UR weakly in 212(R") as e — 0
NRVe — VR a.e iInR™ ase— 0

Since |[Vngr|> = |V |2 for all R > 0, letting € — 0 in (4.31) we obtain that
/ |Vug|’de < C  forall R>0

where C is a constant independent of R. So there exists v € 21?(R") such that

VR — v weakly in 212(R") as R — oo
vr(z) = v(x) a.ez inR" as R — oo

And therefore for any n € C°(R"™)
Uy =NV
This ends Step 4.2.
Step 4.3: We claim that v € C*(R"), v # 0 and it satisfies weakly the equation

.
Av =021 in R™
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We prove the claim. Using eqn (4.4) it follows that for any € > 0 and R > 0, nrv.
satisfies the equation

2" (se)—1
(4.33) A (nrve) + K2a(zc + kex) (nRve) = M}g‘q‘ in 2'(Bo(R))
EARE
2-se
oo ke . fre '\ °¢
From eq. (4.19) we obtain lim — = lim | — = 0. So we have
e—0 ‘;L'e‘ e—=0 |$6‘
T N (Bo(R))
=0 |[ze| |z ; ’

Then equation (4.33) then can be written as
(4.34)

A (nrve) + k2a (we + ker) (nrve) = (1+0(1)) (nroe)” “/71 i 7/(Bo(R)
where lim o(1) = 0 in C° (Bo(R)).

e—0

Since 0 < v, < 1, it follows from standard elliptic estimates (see for instance [14])
that vg € C* (Bo(R)), and up to a subsequence

lim nrv. = vg in CL, (Bo(R))
e—0

Letting € — 0 in eqn (4.34) gives that vg satisfies the equation
Avg =% ! in 2'(Bo(R))

Further as for any € > 0 and R > 0, ngv.(0) = 1, therefore vg(0) =1 for all R > 0.
Moreover max wvg(z) = 1.

z€Bo(R)
Again we have that: 0 < vg < 1 since nrv. — vg a.e in R™ as ¢ — 0. Then again

from standard elliptic estimates it follows that v € C'(R™) and Rlim vR = v in
—+0o0
o

loc

(R™) up to a subsequence. Letting R — 400 we obtain that
Ay =v? ! in 7'(R")

Further we have that max v(z) = v(0) = 1. By Cafferelli, Gidas and Spruck
zeR™

classification of nonegative 2%2(R") solutions of the equation Av = v? ! we then

have :

v(x) = ———— for all x € R"

Moreover,
Ve — 0 in CL.(R™) as € =0

This proves our claim and ends Step 4.3.
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Step 4.4: Coming back to equation (4.31) we have for R > 0

[ IV rel? do <€) 9nll [ g @
Rn Bo(2R)\Bo(R)

L n—2 T — 2

+(1+490) (k:e) / (173( 2 6)) |Vu6\2 dz
‘ QNB._(2Rk.) ‘
n—2
(4.35) < C(9) / (n2rve)? dx +(1+6) < ) / Vuel® da
Bo(2R)\Bo(R)

Now ue — 0 weakly in H{((Q) as e — 0, where for each € > 0, u, satisfies (4.4)
and (4.5). So we have

2% (s¢) *(s¢)
Jvul ar= [P0 drso) < @ P55 o) asesro

Letting € — 0 we obtain, using Step 4.2 and proposition 4.3.1, that for R > 0

n—2

n

/|VUR|2 dz < C(0) / 0¥ dx +(1+6) (limsup (|Z€) ) MG(Q)%
e—0 €

Rn Bo(2R)\Bo(R)

And then letting R — 400 gives us

n—2

/|Vv\2 de < (1+490) <limsup ( fe ) ) 1 () 3
RTL

e—0 |xe‘

Since € > 0 is arbitrary, this implies that
(4.36)

€ "T_2 o 1 Se nT_Q o
Vol dz < | lim «(2)77=2 < ( limsu < ()27 =2
/' e (1 () ) i < (imaw (29)7) T

Le ) " <1, and since 1a () < m (see for

[z -

From eq. (4.19) we have lim sup(

e—0
instance Aubin [2])

o 1 2% —2
2 de < 73 <

Rn

Now
Av=0v¥ "1 in 7'(R™)
Then by Sobolev inequality (4.7)

1 i)
2 dx >
/|Vv| dx > K0 0)
RTL
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9 - 1 PRE)
/ Vol dor = <K<n,o>>
RTL

Then (4.36) implies that
lim sup < He > >1
e—0 ‘xe|

Hence we have

and we have

c\” ke
(4.37) lim (£ =1, lim—=1
e—0 \ |z| e—0 LU
This ends Step 4.4 and completes the proof of Theorem 4.4. O

As a consequence of Theorem 4.4, we get the following concentration of energy:

Proposition 4.4.1. Under the hypothesis of Theorem 4.4 one further has that
|ue(z) > ()

lim lim —— dxr =
R—+00 €0 |,T Se
Q\ B, (Rke)

PROOF. We obtain by change of variables

juca <| e |u i), / juc@) )
x|5e
Q\B,. (Rk.) Ba, (Rk:)

|U5(1‘)|2 (Se dl‘ k? / |U6($)‘2*(s;) dﬂ:

|| T |ze + kx|

Bo(R)
_ |ue<|:c>|2*<86> . <x> [ o 0
€T|Se ‘LLEE 3

Q som |7t 1e®

Letting € — 0 and then R — +o0o one obtains the proposition using Theorem
4.4. O

5. Refined Blowup Analysis 1

In this section we obtain pointwise bounds on the blowup sequence (ue)e>o that
will be used in next section to get the optimal bound.

Theorem 4.5. With the same hypothesis as in Theorem 4.4, we have that
there exists a constant C' > 0 such that for e >0

\ac—:c|nTi2u(ac)—+—M (z)<C forallxz € Q
‘ ‘ d(z,09) - '
Moreover,
lim lim sup | =N uc(z) =0
R—o0e=04e0\B,, (Rk.)

The proof of Theorem 4.5 goes through the proof of the three propositions
below.
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Proposition 4.5.1. With the same hypothesis as in Theorem 4.4, we have that
there exists a constant C' > 0 such that for e >0

n—

2
v — x| 2 uc(x) <C for all z € Q
PROOF. Suppose on the contrary

n—2
sup <|x—x6\7u6(x)> — +00 ase—0
€N

Let y. € Q be such that

e =2 T uely) = sup (| — 2 T uc(@)
zeQ
Then
(4.38) lye — 3:€|an2 Ue(Ye) — +00 ase— 0
We let
AT = ()
then p. < Ac and (4.38) becomes
lim |Ye /\Exel oo
and so we have that
iy =0

Step 1. As our first step we show that

yel
(4.39) 11_{% W = 400

PROOF. Suppose on the contrary

el =0(1) ase— 0
Ae

Then this implies that

lim |y =0

€e—r+00
Let 7o : U — V be a parametrisation of the boundary as in (4.18) around the point
p=20. For all € > 0, we let
€ AS
(@) = "2 To0T)
Ue(Ye)
Step 1.1: For any 7 € C°(R™), one has that nuw, € Hf o(R™) for € > 0 sufficiently

U
forxe)\—ﬂ{xl <0}

small. Let x € R”, then

. . Ae
V (nwe) (x) = we(x)Vn(x) + ) (@) Dx.a) To [Vue (To(Ae))]
One has the inequality : For any 6 > 0, there exists C'(6) > 0 such that for any
a,b>0

(a+b)2 < C(0)a® + (14 6)b?
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With this inequality we then obtain

)\2
/|V(77u76)|2 da < 0(9)/|vn|2uv§ dr+ (1+0) 505 /n2 1Dy To [Ve (To(Ae))] | da
R™ R™ e R"™

Since DTy = Ign we have for € > 0 sufficiently small
A2

/ ¥ (i) czxscw)R[ Va2 i+ (140) (1+00) s Q/ P [Vue () do

With Holder inequality and a change of variables this becomes
(4.40)

n—2
n

/|V(mbe)|2 d < C(6) |V /u2 de|  +(1+0) (1+O()\€))/|Vu5\2 di
R™ Q R™

Now since ||“6HH§0(Q) =0(1) and A\c — 0 as € — 0, so for € > 0 small enough
||77“~)eH91,2(R*1) <y
Where (), is a constant depending on the function 7. It then follows that there
exists w, € 2"?(R™) such that upto a subsequence
Nbe — 1y, weakly in Z12(R™) ase—0
(4.41) v i n
NWe () — Wy () aex inR"” ase—0
Step 1.2: Let n; € C°(R™), 0 <71 <1 be a smooth cut-off function, such that

[ 1 for =z e By(l)
M=V 0 for ze R™\ By (2)

For any R > 0 we let ng = 11 (xz/R). Then with a diagonal argument we can assume
that, upto a subsequence for any R > 0 , there exists wr € 2%2(R™) such that

NrWe — WR weakly in 2L2(R") ase— 0
NRWe(x) — Wr(x) aex InR" ase—0

Since | Vo> = |V |2 for all R > 0, letting € — 0 in (4.40) we obtain that

/ |Vig|°de < C  forall R>0
R™

where C is a constant independent of R. So there exists w € 2%2(R™) such that
WRp — W weakly in 212(R™) as R — oo
Wr(x) = w(x) a.er iInR™ as R — oo

Step 1.3: We claim that @ € C'(R™) and it satisfies weakly the equation
Aw = w1 in R
=0 on {z; =0}
Fori,j=1,...,n, welet g;; = (0;70,0;7T0), the metric induced by the chart 7y on

the domain U N {z1 < 0} and let A, denote the Laplace-Beltrami operator with
respect to the metric g. We let

2

g &

ge=g ()\ex)
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From eqn (4.4) it follows that for any € > 0 and R > 0, nrw, satisfies weakly the
equation

2% (s¢)—1

Bg. (naie) X2 (a0 To(Aex)) (naie) = Mg in Bo(R) 0 {1 < 0)
e

(4.42)

NrWw. =0 on By(R)N{xz; =0}
For R > 0 and € > 0 we have
Torea) =2 T (@) < lye =2 T A el
<76()\6x) — x|

n—2
p
ane(x) S ]-7
|ye - $€| >

It follows from the properties of the map 7o, that for € > 0 sufficiently small
To(Aex) = ye + Or(1)A, for all € By(R) N {x1 <0}
where
[Or(1)] < Cr

L‘;zel = 400, we obtain

€

for some Cr > 0 depending only on R. Then since lin%)
€E—>

)\e - de . e — de 1 >\£
lim L0A) =@y e =z # ORMAL e BoR) A < 0)
e—+0 |ye - xe' e—0 |ye - ‘TE‘
It then follows that for € > 0 sufficiently small

NrW(z) < 2 for all x € By(R) N{z1 <0}

Now, from the properties of the boundary chart 7y, it follows that for any p > 1
there exists a constant C), such that

. P
(nRﬁje)Q (o)1 1
/ W d.l? S Cp ‘;1;79‘10 d$
Bo(R)N{z1<0} Ae Bo(R)N{z1<0}

So the right hand side of equation (4.42) is uniformly bounded in LP for some p > n.
Then from standard elliptic estimates (see for instance [14]) it follows that the se-
quence (1rWe), is bounded in C**0 (By(R) N {1 < 0}) for some ap € (0,1). So
by Arzela-Ascoli’s theorem one has that there exists wr € C1* (Bo(R/2) N{x1 <0})
for 0 < a < a, and that, up to a subsequence

lim npie = wp  in CH* (Bo(R/4) N {z1 <0})
for 0 < a < . And therefore
(4.43) wr =0 on By(R/4) N{x, =0}
Letting € — 0 in eqn (4.42) gives that wg satisfies weakly the equation

Avp =% " in By(R/4) N {1 <0}
(4.44) { Bp =0 on Bo(R/4) 1 Ly = 0}
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We have that 0 < wpr < 2, then again from standard elliptic estimates and applying

the Arzela-Ascoli’s theorem it follows that @ € C'(R™) and Rlim Wr = W in
—40o0

CL.(R™) up to a subsequence. Moreover letting R — +00 we obtain that

Aw = w2 ! in R™
w=0 on {zr; =0}

This proves our claim and ends Step 1.3.

Step 1.4: Let g, € U be such that To(ge) = y.. Then for all € > 0

= Ye
l=]=1
(%)
From the properties of the boundary chart 7y it follows that, for all € > 0
A |Ye|
=0
Ae Ae

So if |?/<—E| = O(1) as € — 0, then there exists 7o € R” such that

€

%—Hjo ase€—0
Ae

For R > 0 sufficiently large we have
(@) = lim (npae) (22) =1
e—0 € 7
and therefore

W(go) = REIEOO WR(Jo) =1

From (4.43), it follows that §o € R™ . But then this implies @ € C*(R") is a
nontrivial weak solution of the equation

Aw = w2 ! in R
’[I):

on {z; =0}
which is impossible, see Struwe’s book [18] (Chapter III , theorem 1.3). This ends

o &

Step 1.4, and therefore proves (4.39) and ends Step 1. O
We let
2-se
le = |Ye se/2). 2 fore >0
Then
liml. =0
e—0

Step 2: We claim that

(4.45)
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PrOOF. We proceed by contradiction. Suppose if

Se
lim —< :0
e—0

Now

Se

|z

> Aee Jae| Aes e
5c

lyelse  lyel*e A& T yele pe

|$e‘

Since hrr(l) =1 as shown in (4.17), it follows that one must have

lim el

e—0

And in particular lim 2l
e—0 lyel —

We can have two cases:

Case 2.1: We assume that, upto a subsequence, there exists p > 0 such that

d(ye, )

> 3
. =

For any € > 0 we let

n—2
We(T) = Ae 2 ue(ye + L) for x € By(2p)

This is well defined since B,,_(2lep) C Q. Using eqn (4.4) it follows that for e > 0,
w, satisfies the equation

2% (s¢)—1
(4.46) Aw, + 2a (ye + lex)we = ——————— in Z'(Bo(2p))
e 4 de g
[yel * lyel
We have
ne n—z n-2
[lex + ye — x€|TZ we(x) < |ye — xé\% Ae 2 Ue(Ye) fore >0 and z € By(2p),
I 2 2
Ye 4 e g Ze we(x) < Yo T fore >0 and z € By(2p)
yel  |yel |Yel el 1yel
2—s¢
Since lim = lim ( Ae ) * =0 from (4.39), and since lun ol — 0, therefore
e—0 ‘ sl e—0 ‘ye |y ‘

we obtain that there exist a constant Cy such that for € > O small
0 <we(z) < Cy for z € By(2p)

Since w. € L™ (By(2p)), by standard elliptic estimates (see for instance [14]) from
(4.46) it follows that there exists wo € C* (By(2p)) such that up to a subsequence

lim we = wo in C! (Bo(p))

e—0

And in particular we have wg(0) = 1.

We have for € > 0 with a change of variable

2" (se) Se WT_Q 2" (se)
/ |ue ()] dr — <yes| ) / |we ()] — dz
|‘r Se )\66 Ye le T ¢

B, (.p) Bo(p) |Tuel F Tuc]
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Passing to the limit as e — 0, we have

" ASE 2 (96)
w(Q) dr < lim < hm sup |u | dr =0
e—0 ‘ye e e—0

Bo(p)

A contradiction since wg(0) = 1. This completes Case 2.1.

Case 2.2: Suppose that
d(ye, 00

e—0 le - 0
Then
lim y. = yog € 02
e—0
Let T be a parametrisation of the boundary 9 as in (4.18) around the point
p =yp. For all € > 0 let
Ue = U O T on UN{z; <0}

For i,j =1,...,n, we let g;; = (0;T,0;T) be the metric induced by the chart T
on the domaln U N{z; < 0}, and let A denote the Laplace-Beltrami operator
with respect to the metric g. From equatlon (4.4) it follows that for any ¢ > 0, .
satisfies weakly the equation

Agiic + a0 T(a)ie = oot in UN{a <0}
. =0 on UN{z; =0}
Let 2z € 9Q be such that
|2) — ye| = d(ye, 09) for € > 0
And let g, z. € U be such that
T(@e) =y  and  T(Z) ==z
Then it follows from the properties of the boundary chart 7, that

lim e = 0 = lim 2 Z6 , (ge)1 <0 and (z))1 =0
For € > 0 we set
e (2 + 1. U-72
ﬁ}ezw for x € Zﬁﬂ{xlﬁ()}
e (Ye) le

So for any R > 0, w, is defined on By(R) N {x; < 0} for € > 0 small enough. Let
ge = g (. +lcx)

Then from equation (4.4) it follows that for ¢ > 0 small, W, satisfies weakly the
equation

Ag(’li)e‘i‘lg (GOT(gé‘i’lex))wE = W in BO(R)O{I’l <0}
1.47) |

B2 -1

lvel

We =0 on By(R) N {x; =0}
From the properties of the boundary chart 7 it follows that for e > 0 small
T (Z +lex) = ye + Or(1)l. for © € Bo(R) N {z1 < 0}
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where
Or(1)| < Cr
I A\
for some Cr > 0. Then lim — m = lim <|6|> =0 from (4.39). Therefore
€0 |y, Ye

Se

TEAHLD™ 4 00 (Bo(R) N {ay < 01

[yel
And then eqn (4.47) then can be written as

lim
e—0

Ag e+ 12 (a0 T (2 + L)) de = (1+0(1)) @ “I7"  in By(R) N {zy < 0}
(4.48)
with We =0 on By(R)N{z; =0}

where lim o(1) = 0 in C° (Byg(R) N {x1 < 0}). We have

e—0

n—2 n— n—2
[T (ZL+1lex) — x| 2 we(x) < |ye — xe|T2 Ae 2 ue(ye) fore >0 and x € Bo(R)N{x1 <0},

n—2
le el T e el ?
’M il we(z) < |2 — e fore >0 and x € Bo(R)N{xr1 <0}
Y| |Ye| el el
2—s. st
le ¢
Since lim ‘ q= = lim (‘ ) * = 0and since lim 12 = 0, therefore lim M -2 1
e—0 |Ye e—0 Yel e—0 [Yel e—0 |ys‘ |y€|

in CY (By(R) N {z1 < 0}) and therefore, there exist a constant Cy such that for € > 0
small

0 <w(x) <C for z € By(2p)

By standard elliptic estimates (see for instance [14]) it follows that there exists
g € C* (By(Bo(R) N {x; < 0}) such that up to a subsequence

lim 1, = 1o in C' (Bo(R/2) N {x; < 0})
€e—

And therefore in particular

wWo =0 on By(R/2) N{xy, =0}

~ Zje_zé
€ =1
w ( ZE )

From the properties of the boundary chart 7 it follows that, for all ¢ > 0

|ﬂ5—22| _ |ye_zé|
le =0 le

So if ye’aﬂ) =0ase—0, then Y2 — 50 as e — 0. And we have

‘We have that

mo(O) =1

A contradiction. This ends Case 2.2 and then Step 2 by proving (4.45). O
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Since liH(l) “J/\_ifl = +00, we then also have with (4.45) that
e— €

|ye — x5| ‘ye - xe‘ /\§€/2

(4.49) T s e 0
Step 3: Suppose that

d(ye, 00
(4.50) y =0(1) ase—0
Then

lim y. = yg € 092
e—0
Step 3.1: Let 7 be a parametrisation of the boundary 92 as in (4.18) around the
point p = yg. For € > 0 let
Ue = U0 T on UN{z; <0}

Fori,j =1,...,n, we let g;; = (0;,T,0;T) be the metric induced by the chart T
on the domain U N {z; < 0}, and let A, denote the Laplace-Beltrami operator
with respect to the metric g. From equation (4.4) it follows that for any € > 0, @,
satisfies weakly the equation

Agiic + a0 T(a)i, = ot in U N {a; <0}
4. =0 on UN{z; =0}
Let 2z € 9Q be such that
|z7'5—y5’ = d(y.,090) for e > 0
And let ge, Z. € U be such that
T@) =y and  T(Z) =z
Then it follows from the properties of the boundary chart 7, that

lim . = 0 = lim 22 , (Je)1 <0 and (22)1 =0
e—0 e—0
For € > 0 we set
5 e (2L + o) U-72
€ = ~57~ f N <0
We () oA or r € L {z1 <0}

Step 3.2: For any 17 € C2°(R"), one has that nw,. € Hf o(R™) for € > 0 sufficiently
small. Let x € R”, then

V (mide) (x) = we(x)Vn(x) +

l
< IITDg/ ITVUE Tgé‘f‘lgfﬂ
3 @Dz T (Ve (T + L)
For any 6 > 0, there exists C(6) > 0 such that for any a,b > 0
(a+b)2 < C(0)a® + (14 6)b*

With this inequality we then obtain
2

z i
JIv@ioP dr<c@) [ 90 ot (40 s [ Do T Ve (TE+ )] do
Rn Rn T g
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Since DyT = Ign, we have for € > 0 sufficiently small

l2
1V @i dr<c) [ 9022 ot (140) (1 +0U) + 0E) s [ 02 Vuc (TE + 1) do
R™ R T gn
With Hélder inequality and a change of variables this becomes

n—2

/\E n—2 . " )\E n—2
[19 i @< co) (z) IVallse | [ de) w0400 +OE) (z) [1vur
R" ‘ o €

Then by the Sobolev inequality (4.7) we obtain for € > 0 small enough

/|V(mbe)|2 dr < [O0) [Vall2. + (140 +0(t) + O()] (@) N SE/|W€|2 dx

R™ Rn

(4.51) < [0O) 1993 + 1+ 0+ 01 + O(D)] /|w€|2 dz
|y

€

since from (4.39) lim
e—=0

= +OO
Now HUEHHio(Q) =0(1) and I, — 0 as € — 0, so for ¢ > 0 small enough

||77U~16H9112(R7_L) < On
Where (), is a constant depending on the function 7. It then follows that there
exists w, € 21?(R™) such that upto a subsequence
e — 1y, weakly in 2V2(R") ase—0
NWe(x) — Wy (z) aex inR"” ase—0
Step 3.3: Let 1 € C°(R™), 0 < n; <1 be a smooth cut-off function, such that

[ 1 for =z e By(l)
M= 0 for zeR™By(2)

For any R > 0 we let ng = n1(x/R). Then with a diagonal argument we can assume
that, upto a subsequence for any € > 0 , there exists wp € 2V?(R") such that

NRWe — WR weakly in 212(R") as e — 0
NRWe — WR a.e mnR™ ase—0

Since |[Vnr|? = |V |2 for all R > 0, letting € — 0 in (4.51) we obtain that

/ |Vig|?de < C  forall R>0
R

where C is a constant independent of R. So there exists w € 2%?(R") such that

WR — W weakly in 22(R™) as R — oo
wr(z) = w(x) aex inR" as R — o0

Step 3.4: We claim that @ € C*(R™) and it satisfies weakly the equation

{A

~O% _ .
=w* ! in R™

on {z; =0}

2 &
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Let
Jde=y9g (Zé + lex)

Then from eqn (4.4) it follows that for any ¢ > 0 and R > 0, nrw. satisfies weakly
the equation

Ay, (nrde) +12 (a0 T (2 + L)) (nride) = % in Bo(R) N {21 < 0}
(4.52) fve]
Nrwe = 0 on By(R) N {x; = 0}
From the properties of the boundary chart 7 it follows that for e > 0 small
T (2 +lex) = ye + Or(1)le for x € Bo(R) N {z; <0}

where
|Or(1)] < Cr
2—s¢
ole ANy
for some Cg > 0. Then lim — = lim | — = 0 since lim = +00, as we
e—0 ‘y6| =0 \ |yl e—0 A¢

have shown earlier. Therefore

T (ZL +lx)
|Yel

And then equation (4.52) then can be written as

A (npie) + 12 (a0 T (5L + 1)) (nrive) = (1 + (1)) (nr@e)* 97" in By(R) N {z1 < 0}
(4.53)

lim =1 in C%(By(R) N {z; <0})

with Nrw. =0 on By(R) N {x; =0}

where lim o(1) = 0 in C° (Bo(R) N {x; <0}). For R > 0 and € > 0 we have

e—0
n—2 ~ n—2 n—2
T (ZL+1lex) — x| 2 Nrwe(x) < |Ye — @] 2 A ? ue(ye),

(IT(ié +lew) — x|

|ye *$e|

)yQURwa)Sl

[Ye

Since lim %”l = 400, we obtain
e—0 €
Z, le - e . e de Or(1 le
lim [T(Z + lex) — @] = lim [ye = 2 + Or(1)L| =1 for all z € Bo(R) N {z1 <0}
€0 |ye - xe' =0 ‘ye - LL’E‘

It then follows that for € > 0 sufficiently small
NrWe(z) < 2 for all © € By(R) N {z1 <0}

By standard elliptic estimates (see for instance [14]) then it follows that the se-
quence (nrWe),, is bounded in

Cleo (By(R) N{z; < 0}) for some ag € (0,1). So by Arzela-Ascoli’s theorem one
has that wg € CY*(Bo(R/2) N{z1 <0}) for 0 < a < ap, and that, up to a
subsequence

lim npie = Wr in CY* (By(R/4) N{z; <0})
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for 0 < a < ap. And therefore in particular

(4.54) Wwr =0 on By(R/4) N{z1 =0}

Letting ¢ — 0 in eqn (4.53) gives that wg satisfies weakly the equation
~ o .o* .

(4.55) AUiR =Wy in Bo(R/4) N{z1 <0}
wr =0 on Bo(R/4)ﬂ{x1:0}

We have that: 0 < wpg < 2, so again from standard elliptic estimates and applying
the Arzela-Ascoli’s theorem it follows that @ € C'(R™) and Rlim Wr = W in

—+00
CL.(R™) up to a subsequence. Moreover letting R — +00 we obtain that
Aw=u2""1  inR"
w >0 in R™
w=0 on {x; =0}

This proves the claim and ends Step 3.4.
Step 3.5: We have that
~ 275 - é;
() =1
‘ ( I )

From the properties of the boundary chart 7 it follows that, for all ¢ > 0
|G — Z] |ye — 2|
He ™ el _ o ge— =l
le le

e, 08 T
4 (v, 0%) = 0(1) as € — 0, then there exists § € R™ such that

So if 4
le
ge — Zé
le
For R > 0 sufficiently large we have

~ ~ . ~ ~e - 22
n(s) =ty (o) (5) =1

— as e€—0

and therefore
m = 1. D U = 1
w(y) = lim wr(y)

From (4.54) it follows that § € R™. But then this implies @ € C'(R™) is a nontrivial
weak solution of the equation
Aw =¥ 1 in R™
w=0 on {z; =0}
which is a contradiction, see Struwe’s book [18] (Chapter III | theorem 1.3). This
proves proposition 4.5.1 when (4.50) holds. This ends Step 3.
Step 4: Suppose that
d (ye, 092)

e—0 le
For € > 0 we let
e\Je le Q — Ye
wir) = YW Tl e Y

ue(ye> le
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Step 4.1: For any n € C2°(R"), one has that nw, € HZ(R") for e > 0 sufficiently
small. We claim that for any n € C2°(R™), there exists w, € 2"?(R") such that
upto a subsequence

nwe — wy, weakly in 212 (R™) ase— 0
Let x € R™, then for ¢ > 0

V () (2) = weVn(a) + AT L n Vugly. + L)
For any 6 > 0, there exists C(#) > 0 such that for any z,y > 0

(z +y)? <CO)2* + (1 +0)y?

With the help of the above inequality we then obtain
/|v (nwe)|* da < C(6) / IVnlPw? da + (14 0)A7 212 /n2 Vue(ye + lex)” da
R™ R™

Rn
With Hélder inequality and a change of variables this becomes

)\6 n—2 .
[ @< (32) vl | [ g

R™ Q

(4.57) +(146) <?)n_2/ (n (””Zye))2|vue|2 do
Q

By Sobolev inequality (4.7) we obtain for € > 0 small enough
2.
/ |Vue* da
]Rn

< [cO IVall, + 1+ oysupr?] [ 1Vuf? do

n—2

n—

/|V (7711)6)|2 dr < [0(9) ||V7i||in +(1+0) supnﬂ <|;:> ’

Rn

R

since lim Vel = 400
e—0 )\e

Now Hue||H1270(Q) =0O(1) and I — 0 as € — 0, so for € > 0 small enough

||ﬂwe\|@1,z(Rn) < Cn

Where C), is a constant depending on the function 7. It then follows that there
exists v, € 2P%2(R™) such that upto a subsequence

{ nwe — wy, weakly in 212(R") as e — 0

(4.58) nwe(z) — wy(x) aezx inR™ ase—0

Step 4.2: We claim that there exists w € 212(R") such that for any n € C>°(R")
we have

Wy = Nw
Let my € C°(R™), 0 <11 <1 be a smooth cut-off function, such that

1 for =z € By(l)
M= 0 for zeR™By(2)
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For any R > 0 we let ng = n1(x/R). Then with a diagonal argument we can assume
that, upto a subsequence for any € > 0 , there exists wr € 21?(R") such that

NRWe — WR weakly in 212(R") as e — 0
NRWe — WR a.e nR"” ase—0

Since ||V77RH,2@ = ||V771Hi for all R > 0, letting € — 0 in (4.57) we obtain that
/ |Vwg|* dz < C forall R >0
RW,

where C'is a constant independent of R. So there exists w € 2%2(R") such that

WR — W weakly in 212(R") as R — oo
wr(z) = w(z) a.ex inR" as R — o0

And therefore for any n € C°(R™)
Wy = NW
This proves the claim.
Step 4.3: We claim that w € CY(R™), w # 0 and it satisfies weakly the equation
Aw = w? ! in R"
Using eqn (4.4) it follows that for any ¢ > 0 and R > 0, ngpw, satisfies the equation
L

(450) A (nmwe) + 2a (ye + Lox) (nw,) = JEY —  in 2(Bo(R))
\ +
[ye Iy v
2—se
e . Ae
We have lim — = lim = 0. So we have
=0 [yel =0 \Jye|
im |25 + l—ex - =1 in C% (By(R))
=0 [[yel  [yel
Then equation (4.59) then can be written as

(4.60)
A (nrwe) + 20 (ye + Lew) (nmwe) = (1+0(1)) (nrwd)™ ™71 in '(Bo(R))
where liII(l) o(1) =0 in C° (By(R)). We have for R > 0 and € > 0
€E—>

n-2 n-2 n-2
|ye + le‘r - Ie| 2 ane(x) S |ye - Ie| 2 >‘6 2 ue(ys)a

n—2
|ye + lex — 2|\ 2
< lye — x| ) < 1
Since lin(l) h"l_ixl = +00, we obtain
e— e
e+ le

i ()|y|_;;xl~||:1 fOI‘aerBo(R)m{fL'lSO}
e— — T,

It then follows that for € > 0 sufficiently small
nrw(z) <2 for all x € By(R) N {z1 <0} uniformly
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It then follows from standard elliptic estimates (see for instance [14]) that wgr €
C' (By(R)), and up to a subsequence

liH(lj NRWe = WR in C., (Bo(R))

e—

Letting € — 0 in eqn (4.60) gives that wg satisfies the equation
Awg = w in 2'(Bo(R))

Further as for any € > 0 and R > 0, nrw¢(0) = 1, therefore wr(0) = 1 for all R > 0.

Again we have that: 0 < wg < 2 since nrw. — wg a.e in R™ as € — 0. Then again

from standard elliptic estimates it follows that w € C*(R") and Rlil}rl wrp = w in
—+00

Cl

oe(R™) up to a subsequence. Moreover letting R — +00 we obtain that

Aw =w? ! in 7'(R")

Moreover w(0) = 1 since wg(0) = 1 for all R > 0, and so w # 0. This proves teh
claim and ends Step 4.3.

Step 4.4: We obtain by a change of variable for R > 0 and € > 0

2*(56) Se % 2*(35)
[T (YT e,
|xs€ )\ee Ye e

le
B, (RlL.) Bo(R) |Toel T Twl®
So
* n=2 *
(@) dx:<A§‘ ) o Juc(@) ¢
Ye .| |ye | ||
Bo(r) |Tval T Twal® B, (RL.)

Passing to the limit as ¢ — 0, we have for R > 0

. 27 (se)
w? dz < limsup [ue()]

e—0 |-T|s6
Bo(R) By (RlLe)

dx

and so

. . 2% (se)
/w2 dr = lim / w? dr < lim lim sup / %daz

R—+o00 R—+00  ¢0 |1‘ Se
Rm BO(R) Bys (ng)

Now for any R > 0, B, (Rk.) N By, (Rl.) =0 for ¢ > 0 sufficiently small. For if
x € By (Rk.) N By _(RI,), using that p. < A\ and (4.17), we get

— — _ s¢/2 )Se/2
|ye we' < |ye .%‘| + ‘LL' xe| <r(1+ E <rl1+ |£L‘6 Ae e
le le le le Mie/Q |y5

Se/2 ):

5e/2 /\?/2
sé/2> = O(R)

= 400 as shown in (4.49). Then

|

/Lié/Q |y5

<R<1+

.. .. . . Ye — Te
This is a contradiction since we have hH(l) |17|
€e— €

by proposition 4.4.1

[t () > ()

Se

/wQ* der < lim limsup dr =10

R—+400  ¢0 |l’
R" O\B,. (RL.)
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But this contradicts what we have obtained in Step 4.3. Hence (4.38)) does not
hold when (4.56) holds. This ends Step 4.

This completes the proof of Proposition 4.5.1. O

Having obtained the strong bound in Proposition 4.5.1 we show that

Proposition 4.5.2. With the same hypothesis as in theorem 4.4 we have that
there exists a constant C' > 0 such that for e >0

1z — 2| |[Vu(z)| < C and |z — 2| ue(z) < Cd(x,00) for all z € Q

PRrROOF. We proceed by contradiction and assume that there exists a sequence
of points (Ye)e>o in Q such that

N n/2
(4.61) lye — 2% |V ()] + lye d:(ﬂj aé‘;(‘%) 400 ase—0

We let

limz, =29 €Q and limy, =yo € Q
e—0 e—0

Case 1: we assume that z¢ # yo. We choose ¢ > 0 such that 0 < 46 < |z — yo|-
Then one has that § < |z — z.| for all z € B,,(26) N2 and proposition 4.5.1 then
gives us that there exists a constant C(0) > 0 such that

0 < wue(x) <C(J) for all z € By, (26) N Q

Further for € > 0, u, solves the equation

u2*(se)—1 .
(462) Aue + aQUe = ‘I.ZT 1n By0(25) n Q,
ue =0 on By, (26) N oS

The right hand side of the above equation is uniformly bounded in L? (B, (26) N )
for some p > n, for all ¢ > 0 sufficiently small. Then from standard elliptic
estimates (see for instance [14]) it follows that the sequence (uc),- is bounded in

C! (By,(6) N Q). So there exists a constant C' > 0 such that
[Vue(x) < C and ue(z) < Cd(x,00) for all € B, (6) N Q

a contradiction to (4.61), proving the proposition in Case 1.
Case 2: we assume that xg = yo. Let

Qe = |ye - xe'
Then lima, =0 .

e—0
Case 2.1: We assume that upto a subsequence
d(ze,0Q) > 2 |ye — x|

For € > 0 we let

Ue (e + aex) for = € By(3/2)
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This is well defined since B, (2a.) C Q. Using lemma proposition 4.5.1 one obtains
that there exists a constant C' > 0 such that

|ze + acr — x|
Qe

) D d(x)<C fora e Bo(3/)2),

|x\nT72d€(x) <C for z € By(3/2)
And so there exists a constant C' > 0 such that for € > 0

tc(z) < C for all x € By(3/2) \ Bo(1/4)
Moreover from equation (4.4) it follows that for € > 0, u. satisfies the equation
~2%(se)—1
Ue

Y (30(3/2) \30(1/4))

Aﬂe + aga (ye + Oésﬂf) Ue =
‘%—i—x

Since 0 < @ (x) < C for all x € By(3/2)\ Bo(1/4), the right hand side of the above

equation is uniformly bounded in L? (BO(3 /2)\ Bo(1/ 4)) for some p > n, for all

€ > 0 sufficiently small (the bound even holds in L* when |z./a. — 00 as € — 0).
Then from standard elliptic estimates (see for instance [14]) it follows that

il (sais mmtrm) = O as €0

The points === € By(5/4) \ Bo(1/2) for all € > 0. Taking x = #<== one then

[ye—zc| [ye—z|

obtains as € — 0
~ ye*xe ~ ye*xe
Vi, | — || = O(1), u€<)01
i (p=g)| = oo ve—wd) =W

comig back to the defination of 4. this implies that as e — 0

|ye - ZL’€|n/2 |Vu5(y€)| = O(l)a
n/2

M2 _
Ye =z uc(ye) _ |ye — x| ue(ye)zo(l)

d(ze,00) - 2 |ye — x|
But this is a contradiction to (4.61). This ends Case 2.1.

Case 2.2: We assume that upto a subsequence
d<x6769) S 2 |ye - l‘€|

Let T :U — V be a parametrisation of the boundary 99 as in (4.18) around the
point p = xg. Let z, € 9 be such that

|ze — x| = d(x, 00) fore >0
And let Z., Z. € U be such that
T (%) = @ and T(Z) = ze
Then it follows from the properties of the boundary chart 7, that
lim# =0=lmZ, (&) <0 and (%) =0
For all € > 0, we let

n—2 U — 26

2 e o T (Ze + ae) for x €

ﬂ{xl SO}

€
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For any R > 0, @, is defined in By(R) N {x; < 0} for € > 0 small enough. Using
lemma proposition 4.5.1 one obtains that there exists a constant C' > 0 such that

<T(2€ + a.r) — T

Qe

n—2

) ’ Ge(x) < C for z € Bo(R) N {z1 <0}

We let

xe_ge

Pe =
Qe

From the properities of the boundary map 7 it follows that p. € R™ and that
& — & :O(|x5—z€|> =0(1) ase—0
Qe Qe
So there exists py € R_ such that
Pe — PO ase—0

Also from the properties of the boundary chart 7 it follows that there exist a
constant Cr > 0 such that
[T (Ze + ) — x|

€

|pe — x| < C1

Therefore for some constant C' > 0
|p€—m|%ﬂe(sc) <C for x € Bo(R) N {x1 <0}
Hence for any R, ¢ > 0 there exist a constant C'(R, ) such that for ¢ > 0 small
tc(z) < C(R,0) for all z € By(R) \ By, (d) N {x1 <0}

For i,j = 1,...,n, we let g;j(z) = (0T (2 + acx),0;T (Zc + o)), the induced
metric on the domain By(R) N {z1 < 0}, and let A, denote the Laplace-Beltrami
operator with respect to the metric g. From equation (4.4) it follows that for any
R, > 0, G, satisfies weakly the equation

)2" (se) -1 [

Ag e+ a2 (ao T(Z + ) i = S8 5 in By(R) \ B, (6) N {x1 < 0}
(4.63) e
4. =0 on By(R) \ By, (8) N {z1 =0}
Again from the properties of the boundary chart T, it follows that for any p > 1
there exists a constant C,(R, ) such that

P

(@)* )" 1
Py < -
/ TG | dz < Cp(R,9) = 55 dx
Bo(R)\ By (8)N{21<0} ac Bo(R)\Bpy (®)N{z1<0} | %
1
< Cy(R, ) / ! &
Re
Bo(R) |ar T7

Choosing s, > 0 sufficiently small it follows that the right hand side of equation
(4.63) is uniformly bounded in L? for some p > n. Then from standard elliptic
estimates (see for instance [14]) we have

Hae||CI(W\BPO(25)ﬂ{I1SO}) =0(1) ase— 0
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and @, vanishes on the boundary By(R/2) \ B,,(26) N {z1 = 0}. Let g. € U be
such that 7 (g.) = y.. From the properities of the boundary map T it follows that
a constant Cr > 0

Ye — Ze
Qe

1 _ g
CT ‘ye_-rel

Pe

Therefore we can choose § > 0 small and R > 0 large such that for ¢ > 0 small
enough.

Ye % ¢ By(R/2)\ Byy(23) N {arr < 0}

€

It then follows that as e — 0

‘vae < Ye — Z)‘ =0(1), . (y — Z) =0(1)

Qe Qe

and since @, vanishes on the boundary By(R/2)\ B, (26) N{z1 = 0}, it follows that

oz () o (B — o (1) - o (02)

comig back to the defination of %, this implies that as e — 0

lye — ze|"? Ve (yo)| = O(1),

|ye - $€|n/2 ue(ye) o
d(ze,00) =0(1)

But this contradicts (4.61). This ends Case 2.2.

All these cases prove Proposition 4.5.2. (]

As a consequence of Proposition 4.5.2, we get the following:

Corollary 4.5.1. Let (u.)

then upto a subsequence

>0 be as in theorem 4.4, and let !1_% Te — xo € Q,

lg% ue =0 in Clloc(ﬁ\{x()})
PROOF. Let ' cC Q\{zo} be a compactly contained open set. Then it follows
from the bound obtained in proposition 4.5.1, that ||[uc|| ;) < 400 for all € > 0.
2% (se)—1

So UG‘T € LP(Q) for any p > n, and € > 0 . From eqn (4.4) and with standard
x €

elliptic estimates (see for instance [14]) it follows that for all €
||ue||c1,a(ﬂl) <

for some positive constant C” and o € (0,1). Hence the sequence (u) is precompact
in the space C'(Q'). Since uc — 0 weakly in Hf ,(€2), therefore uc — 0 in C* (&),
as € — 0. Note that if 0 ¢ € then

2—s

ue(x) "2
Se/2

—se

=0 (ue(x) = ) for all x €

|z
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And if 0 € € then

2—se 2—se
ue(x) ™2 2o\ |x| 72 25 (=255
< ——— < = il = —
0 < ‘{E 56/2 S ( xSélgl |V’u,€| n—2 ) |x|55/2 :él(}z)/ |V’LL6| n—2 |.’17| n—2 2

:O( sup |Vu6|%"~55) for all x € O
e

Since u. — 0 in C1(Q’) as € — 0 therefore we also have that

2—s.
. ’U,E(.'L')ﬁ
lim s

e—0 |x

=0 in C’looc(g\{ﬂﬂo})

We slightly improve our estimate in Proposition 4.5.1 to obtain
Proposition 4.5.3. With the same hypothesis as in theorem 4.4 we have

n—2
lim lim sup |z — x| 2 uc(z)=0
R—+00 €—0 z€Q\B,, (Rk.) € €
PROOF. Suppose on the contrary there exists ¢y > 0 and a sequence of points
(Ye)eso € 2 such that upto a subsequence
nE ns2 |ye — x|

(4.64) [Ye — zc| 2 ue(ye) > €2 and lim =“—% = 400
e—0 ke

It then follows from corollary 4.5.1 that

li_f>f(l)\ye—905| =0

Let
_n—2
)\e > = ue(ys)

Then (4.64) becomes
(4.65) C > @ >e¢  forall €>0
and so

limA. =0

e—0

Since liH(l) “’k_iwl = 400, using proposition 4.5.1 we obtain that as e = 0
e— €

ke ke |ye - xe| ( ke )

4.66 — = =0 =o(1
( ) )\e |ye - il'€| >\5 |ye - :L'e| ( )
We let

2—sc
le = |ye*/®Xe 2 for € > 0
Then
liml. =0
e—0

Step 1: We claim that

(4.67) lye
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ProOOF. We proceed by contradiction. Suppose that

LA
lim —— =0
e—0 ‘ye Se
Now
| |2 i A |l Ade |ael®
- Se — Se
yel>s  lyel*e Ac |yel®e  pe
Se . . .
Since lir% % =1, it then follows that in this case
e— €

Se

I |2
im
e—0 ‘yﬁ

Se

And in particular one has that lim ||Z|| =0 and lim A—‘ = 0. Then

e—0 e—0 ye
Mzwl_@ — 4o ase— 0
Ae Ae |y€

A contradiction to (4.65) . This completes the proof of (4.67) and ends Step 1. O

Step 2: We claim that there exists ¢ > 0 such that for € > 0 small

|ye - xe' _ |ye - xe' /\§€/2 N
le /\e |ye se/2

This follows directly from (4.67) and (4.65).

(468) Co

Step 3: We assume that there exists py > 0 such that upto a subsequence

(4.69)
Without loss of generality we can take 2py < co. For € > 0 we let

n—2
We(x) = A ? ue (Ye + lex) for x € Bo(po)

This is well defined since By, (lepg) C Q. Using eqn (4.4) it follows that for e > 0
w, satisfies the equation

2% (s.)—1
(4.70) Aw, + Pa (ye + lx) we = % in 2'(Bo(po))
€ + € x
[Yel [ye

From proposition 4.5.1 we have for some constant C' > 0

n— n—2
|l6x+y€—x6|72w6(x)§0/\52 fore >0 and z € Bo(po)
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And so
n—2
2 n—2
1 A\ T
we(z) < C <> fore >0 and z € Bo(po)
o= (=) )
n—2
3 se(n—2)
1 le 2(2—s¢)
<C < fore >0 and z € Bo(po)
T (a:efye) ‘y6|
n—2
p) se(n—2)
<C L e\ 0 and z € By(po)
QA > S
r— (r;y) d(ye, 00) ore and @ olpo
n-2
p) se(n—2)
1 1 2@==0
<C < fore >0 and z € By(po)
T — (zl;y) 2p0

=

C
2 <
2

r— Te — Ye
Ae

And so there exists a constant Cy > 0 such that

we(x) < Cy fore>0 and z € By(po)
Also we have in this case : ‘Zl"l > M > 2pg, SO \zlfl < ﬁ, and therefore for
z € Bo(po)
2 7 |yl yel 2

Coming back to equation (4.70) we then have that the right side of the equation
is uniformly bounded in L* for ¢ > 0 small. Then, again by standard elliptic
estimates it follows that that there exists wo € C* (Bo(po)) such that up to a sub-
sequence

. _ e
ll_r)r(l)w6 = wo in C* (Bo(po/2))
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So in particular wg(0) = 1. We have for € > 0

2% (s.) se\ 22 2% (s.)
/ |Ue(5'3)\S do — <|y)\:| ) / |we ()] e
|| 5 : ‘ e 4 L

By (%1 Bo(£2) |Tuel T Tyl
se(n—2) ¥
|ye| | 2= |we () > ()
=7 e dx
Ye_ e
‘ Bo(£2) ‘\yfl + Tyl ©
Besnl 2°(s.)
S (d0m) jwe()
B l Ye le S
‘ Bo(22) |lyel T a®
sc(n—2) 27 (se)
> (on) 2(27552) M‘l% dz
Ye e
Bo(22) |lyel T Tgd®
Passing to the limit as ¢ — 0, we have
2 (s¢) .
lim / M dr > / w% dzx
e—0 |1‘ Se
By () Bo(%)
We have shown in proposition 4.4.1 that
2" (se)
lim lim M dr =20
R—+o00e—0 |J,‘|ée
Q\B., (Rk.)
So given any 6 > 0, there exists R large, and € > 0 small such that
2" (se) -
/ M dr <§ for e<e
EE
Q\Ba, (Rke)
From (4.68) it follows that for ¢ > 0 small
2p0<02§‘y67x6|§‘x67z|+@ for xeBy (@l€>
. I, 2 <\ 2

Therefore for € > 0 small
|ze — x| _ 3ea 00
> = —
. = for xEB%(ZZE)

Using (4.66) we have that

Re _kede _Rede [k ((1)\TF
le _)\e le _Ae le o )\6 200

Therefore there exists ¢ > 0 small such that for ¢ < €’

|x5_x|>3ﬁli>3£
ke — 4 kT 4

R for z € By, (%ZJ

So for € < ¢

QN B, (%L) c O\B,. (Rk.)

dzr
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And hence for all & > 0

2*(s.) 2 (s.) N .
/ M dr < / M dr <6 for e < min{é¢, €'}

|| ||
By (51e) O\B,, (Rke)

Since 0 > 0 is arbitrary, it follows that

. 2" (s0) 2* (50)
/ w? dr < lim / |ue(|x)||sdx§hm / [CEC]
.’I; €

e—0 e—0
Bo(4) By (8210) O\ Ba, (Rk.)

and then wg = 0 in By(po/2), a contradiction since we have earlier obtained that
wp(0) = 1. This proves proposition 4.5.3 when (4.69) holds, and therefore this ends
Step 3.

Step 4: We assume that

d(ye, 00
(4.71) lim W9 _
e—0 le
We note that then one also has from (4.67)
Q Se Q
d(y;3 ) _ IyA d(yel,a ) _ o1)  as e—0

and
lim y. = yog € 092
e—0
Let T be a parametrisation of the boundary 92 as in (4.18) around the point p = yq
For all € > 0 let
e =U 0T on UN{xs <0}

For i,j =1,...,n, let g;; = (0;T,0,T) be the metric induced by the chart 7 on
the domain U N {z1 < 0}, and let A, denote the Laplace-Beltrami operator with
respect to the metric g. From equation (4.4) it follows that for any € > 0, i, satisfies
weakly the equation

,&2*(56)—1 .
Agﬂe‘FaoT(ﬂf)ﬂE = W m Uﬂ{l‘l < 0}
(4.72)

. =0 on UN{z; =0}
Let z. € 9Q be such that
|zl — ye| = d(ye, O) for e >0
And let ge, 2. € U be such that
T@e)=ye and  T(Z%) =z
Then it follows from the properties of the boundary chart 7, that
lmg.=0=lmz, () <0 and (5) =
We let
N AR

— =7 <
We A for x € Bo(ep/4) N{x1 <0}



128 4. BLOW-UP ANALYSIS

w, is well defined for € > 0 small sufficiently enough. Let
Je=9 (Zé + )‘6‘%')

Then for e sufficiently small, w. satisfies weakly the equation

~2 (se)—1

n Bo(60/4) n {LL’l < 0}

+)\‘a:)

A e + N2 (aoT (2L + Ae))
(4.73) ‘

’LZ}6 =0 on Bo(€0/4)m{131 :0}

From proposition 4.5.1 we have for a constant C'
n—2 n—2
T (2 + Aew) —ae| > de(z) < CAT

n—2
I~ )\6 — X 2 B
(T(ze—k x) x|> u(z) < C
Ae
It follows from the properties of the map 7y, that for € > 0 sufficiently small
Z. >\e - Je
'T(ZﬁA B ad %0 for = € Bo(eo/4) N {1 < 0}
So there exists a constant Cy > 0 such that for e > 0 sufficiently small we have
We(z) < Cy for x € Bo(eg/4) N{x1 <0}

Again from the properties of the boundary chart 7T, it follows that for any p > 1
there exists a constant C}, such that

; p
(w6)2 (85)71 1

dx < dx
‘T(gg+>\€x) S =G Seb
Ae

EA
x t@

Bo(eo/4)N{z1<0}

Choosing s, > 0 sufficiently small it follows that the right hand side of equation
(4.73) is uniformly bounded in L? for some p > n. Then from standard elliptic esti-
mates (see for instance [14]) we have that, there exists 1w € C (By(eo/8) N {x1 £ 0} )
such that up to a subsequence

lim e = in C! (By(eo/16) N {x; <0} )

e—

And therefore, in particular
(4.74) w=0 on By(eg/16) N{x1 =0}

One has for all € > 0
~ ge - éé
e =1
‘ ( A )
And from the properties of the boundary chart 7 it follows that, for all ¢ > 0 in

this case
|?je — 22‘ ‘ye - z/el d(yﬁ 89) le
e = _— = — - 1
N Ol o= o(x ) =°W

As, liH(l) W, = W in C* (By(€p/16) N {x1 < 0} ) then @(0) = 1. But this contradicts
e—

what we have obtained in (4.74), proving proposition 4.5.3 when (4.71) holds, and
ends Step 4.

These four steps complete the proof of proposition 4.5.3. O
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4.6. Refined Blowup Analysis II
Now we proceed to prove the main theorem of this section.

Theorem 4.6. Let Q be a bounded smooth oriented domain of R", n > 3,
such that 0 € 09, and let a € C*(Q) be such that the operator A + a is coercive
in Q. Let (s¢)eso € (0,2) be a sequence such that liH(l) se = 0. Suppose that the

€E—

sequence (uc),~o € HT o(Q), where for each € > 0, uc satisfies (4.4) and (4.5), is a
blowup sequence, i.ce

ue —0 weakly in Hi () as €e—=0

Then, there exists C > 0 such that for all € > 0

e =
. <C|———"""—— llxeQ
ue(x) < <M3+|$—$e2> for all x
where
n—2
T2 —
He =uc(z) = r;leaé(us(x)

PROOF. Step 1: we claim that for any a € (0,n —2), there exists C, > 0 such
that for all e > 0

n—2
(4.75) |z — 2| pe®  “ue(x) < Cy for all z €

PROOF. Since the operator A + a is coercive on  and a € C(f), there exists
Uy C R™ an open set such that €2 CC Uy, and there exists a; > 0, A; > 0 such that

/\Vap|2 da:—&—/(a—al)ng deAl/ch dx for all p € C°(Uy)
Uy Uo Uo

In other words the operator A + (a — ay) is coercive on Uy. Here, we have extended
a by 0 outside Q (the resulting function is not necessarily continuous on R™).

Let G : Uy xUp\{(z, ) : & € Uy} — R be the Green’s function of the operator A+
(a—ay) with Dirichlet boundary conditions. G satisfies in the sense of distributions

(4.76) AG(z,-) + (a — a1)G(z,-) = b,
Since the operator A + (a — a;) is coercive on Uy, G exists. See Robert [17].

We set for all e >0

(4.77) Ge(z) = Gz, x) for x € Up\{x.}
ée satisfies for all € > 0
0< ée(a:) < Ln—Q for x € ﬁo\{$€}
|z — x|

here C is a constant. Moreover there exists dg > 0 and Cy > 0 such that for all
e>0

(4.78)

[VGe()] Co

_ = > for x € B, (6 z.} CC U
|1'—(E5|n72 |G€(Z‘)| |JL'—136| e( 0)\{ } 0
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We define the operator

2% (s¢)—2
Lo=A+4a—t

]

Step 1.1: We claim that there exists vy € (0,1) such that given any v € (0,vyp)
there exists R; > 0 such that for R > R; and € > 0 sufficiently small we have

(4.79) LG >0 in O\B,, (Rk.)
We prove the claim. We choose vy € (0,1) such that for any v € (0,1p) one has
Z/(a—al)z-% in Q

Fix v € (0,19). We have for all € > 0 sufficiently small

LG AG up 672 VG|
. —(1l-v)—4a- S (1l —v)— in Q\{x.
G (1-v) z. EE (1-v) P e}
Using (4.76) we then obtain
LGl VG > ul )7
—<— = - 1- < - in Q\{z.
Glfu a1 +V(a a1)+V( V) |G€|2 |x|$5 mn \{l’ }
ay |VG~'E|2 ug*(se)—2 )
> —4v(l—v)— - in Q\{z.
-y o}
Let |z — x| > dp,where &y is as in (4.78), then from corollary 4.5.1 we have
u2*(se)72
lim —————— =0 in C(Q\B..(6))
e—0 |:L' Se

Hence for € > 0 sufficiently small we have for v € (0, vp)
LGl
Gl—l/

By strong pointwise estimates, proposition 4.5.3 we have that, given any v € (0, 1),
there exists Ry > 0 such that for any R > R,

>0 for x € Q\ B, (o)

n—2
4

v(l—v)

sup |z — m6|n772 ue(x) < [ 1 Cg]

O\B, (Rk,)

Here Cy is as in (4.78). And then using proposition 4.5.2 we obtain for € > 0 small

u2*(56)72 u Se
sup = —— —— = sup [uf (s¢)=2=sc (6> ]
O\ B (Rke) |z|5 O\ B, (Rke) ||

—nse

v(l—v = 1 C*e
=~ ((4)002> 4—nse

o — ] E T e

N

v(l—v) C?

o 2 |:c—a:€|2
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Therefore if © € By_(00)\ By, (Rk.) then with the help of (4.78) we obtain for € > 0
small
LG ap v(l-v) C?
>+ >0
Ge&voT 2 2 |z—az
This proves the claim and ends Step 1.1. Hence our claim follows.

Step 1.2: Let v € (0,19) and R > Ry. We claim that there exists C'(R) > 0 such
that for € > 0 small

n—2

L. (O(R)ue 2 *”("*”Gg*") > Loue  in O\B,, (Rk.)

(4.80) CR)u” "G > 4, on 8 (Q\B,, (Rk.))
We prove the claim. Since L.ue = 0 in €2, so it follows from (4.79) that

n—2

L. (C(R),ue 2 *”““Q)Gg—”) > Lou,

in Q\B;, (Rk.) for R > Ry and € > 0 sufficiently small. With (4.78) we obtain for
€ > 0 small

ue(z) _ e’ (Rke)("—Q)(l—V)

n=2_ . _ = Tn=2_ _ 1—v
Me 2 ( Q)Gl l/(l,) ,ue 2 ( 2) CO
R R(n—2)(1—u)

o\ e cl

2R)(n=2)(1-v) S\
< (R)f since lim He =1
CO v e—0 |,’I,‘€|

for x € QN OB, (Rk.)

So for z € 0 (Q\B,, (Rke)) one has for € > 0 small

ue(x)

n—2
ujfy(nfz)Gi_W(a:)

< C(R) for v € QN OB, (Rke)

This proves the claim and ends Step 1.2.

Step 1.3: Let v € (0,19) and R > R;. Since G17¥ > 0 in Q\B,, (Rk) and
LG > 0 in Q\B,, (Rke), it follows from [3] that the operator L. satisfies the
comparison principle. Then from (4.80) we have that for € > 0 small

n—

ue(z) < C(R)uf_y(n_z)(?i_”(x) for x € Q\B,, (Rk.)
Then with (4.77) we get that

n—2
2 — 2" D0y (@2) < OR)pe? " for € O\B,, (Rk.)
Taking o = (n — 2)(1 — v), we have for « close to n — 2
n—2

“uc(z) < C, for = € Q\B,,_ (Rk)

\x - Ie|a fe 2
Let o € (0, @), then

o 2o He o a “F2-a
|z — @e|™ e ue(w) = |2 — @™ pe® ue(x)
|z — 2|

i 35/21 a—a’ L
S((M) R) o= u® “ula)  for @€ Q\By, (Rk.)
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Where we have used (4.37). Hence for all a € (0,n — 2) we have that

n—2
2 — x| e Tuc(z) < Cy for = € Q\B,, (Rke)
Obviously one has for a € (0,n — 2)

n—2
|z — 2| pe®  “uc(z) < Cy for z € B, (Rk,)

These two inequalities prove (4.75). This ends Step 1.3 and also Step 1. O

Next we show that one can infact take o« =n — 2 in (4.75).
Step 2: We claim that there exists C' > 0 such that for all € > 0
(4.81) |z — 2" ue(ae) ue(z) < C for all x € Q

PrROOF. Let y. € 2 be such that

|7L—2

|ye - xe|n_2 us(xe) ue(ye) = sup |:C — Te UE(’IE) us(x)
zeQ

Then (4.81) is equivalent to proving that
e — 2" ue(ze) uc(ye) =0(1)  ase—0
We have the following two cases.
Step 2.1: Suppose that
|ze — ye| = O(pe) as e —0
By definition (4.14) it follows that

|n—2 n—=2 92-n

ye — el uc(we) ue(ye) < lye —xe[™ " puc
This proves (4.81) in this case and ends Step 2.1.
Step 2.2: Suppose that
|z — ye

lim ——— = +00 ase€— 0
e—0 e
We let for e > 0
n—2 Q —
Ve(x) = e 2 ue (e + Te) for x € e

e
Then from (4.75), it follows that for any o € (0,n — 2), there exists C, > 0 such
that for all € > 0

n—2 —a
|:u'€x|a :Ufj Ue (,U*ex + xe) < Cq for z € €,
2| bc(z) < Co for € 2
e
And so
N a / Q—z,
V() + || Oe(x) <14 Cq = CJ for z €
He
Hence for all € > 0 and « € (0,n — 2), we have for a constant C?, > 0
Cl - de
De(x) < o for x € a
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Let G € C?(Q x O\{(z,z) : * € Q}) be the Green’s function of the coercive
operator A + a with Dirichlet boundary conditions on . It follows from Green’s
representation formula that

“<>
(Ye) /Gm Ye) dx forall e>0

using the estimates on Green’s function this becomes

2" (se)—

Ue ! ($) d

EE

T for all e >0

1
(4.82) Ue(ye) < C/ —
5 |z — el
where C' > 0 is a constant. We write the above integral as follows

1 .
(ye) <C — e (x)? )15 forall €e>0
|l‘| |£C - ye‘n 2

Using Holder inequality and then by Hardy inequality (4.8) we get for all € > 0

) 5c/2 = 2o
€ 1 o * —1— =
uclye) <C / |u (962)\ de / N ue ()@ G018 525 gy
|| |z — y|
Q Q
se/2 2 e
2\’ 2 1 o (2 (5¢)—1—s0) g2
<C||——= |Vue|® dz R —— ue ()" Ve 2=sc dx
Q Q
The sequence (uc)eso is bounded in H? () as shown in (4.11), so it follows that
there exists a constant C' > 0 such that for e > 0 small
e(ye) 25 = < C/ 2(n 2) Ue(SC)(2*(55)_1_86)2—i5E dx
‘JZ - ye
With a change of variables the above integral becomes
n 1
u(y) = < C (QM(G )—1-s0) / gy Oel Sk
MEZ - Q- a, ‘ye — Te — HeX |
He
And so we get that for € > 0 small
_n—2 2—256 1 o* 1 2
() e P
. Ye—xe Ye — Te — HeX
Queem{‘ye_xe_uéx‘z%} ‘ |
(4.83)
1
+C 2(n— 2) Ve (l’)(2 (se)=1=s) 725, dx
|ye — Te — HeT |

Q—=x —z
2‘,,:F m{lyefwefﬂemlg lve 216‘ }

for ¢
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We estimate the above two integrals separately. First we have for € > 0 small

1 *(s ,
2(n—2) ﬁe(x)(2 (ée)_l_bE)i dux

|ye — Te — Mex| 2o

e ﬁ{|yefw5*uefr\2 lve ;ms‘ }

e
22(n-2)
2—sc N

< —a3 / f)e(w)(z (se)=1=s) 3250 gy

|y€ - IIZE| 2 Q—z,

He

- C‘«a / 1 (2*(SF)_1_SS)ﬁ J

e - T
) =2 ) Rl

_ 2—s
|y€ Te C ala.

For « close to n — 2 we have

So we obtain that

2% (se)—1
Ve (l‘) 1
/ |y — _Mw|n_2d$20<2(n_2)> as € — 0

—x 2—s
L;:E r‘l{'ye_ze_l"el"z‘yegze‘} ‘ye E| ‘

(4.84)

On the other hand for € > 0 small

1

=) ﬁe(x)(Q*(se)—l_se)z%e "

|Ye — Te — pex| 3¢

Q- -
22ze 0 {|ye—we —pea| < Legzel b
1 1

|ye — Te — Mel'| zgi;? |‘r‘(2*(86)71756)230;6

< Cy dx

Q=ze |y, —o —ppow|< regzel

(2% (8¢)—1—s5¢) 522
AT 2-se 1
= Ce (MI) / o

— 2(n—2)
|ye Te |y6 — . — Me$| P

{|yefw57ueg;|§@}

2" (se)—1—sc) 2%
2\ =5 1 1
< Ca (|y5 — m€|) E |x‘2;7:f) dx
{‘zlé\yegmd}
2 (50)—1—s.) =20 4—ns.
- |y6 - 1’€| /.t?‘
(2*(35)71735)230‘ —n ﬁ
<Cy ( e ) se 1
- |ye - 17€| |y6 — $E|n72
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Since lim ) [(2*(&) —1—5.) 52X — n] = {2 — p=2 se} for each € > 0, so taking
a—n— Se Se
a close to (n — 2), we obtain for e sufficiently small

2

2% (s0)—1 e
e 1
Y (2) — dx = o(1) () as € —0

|ye — XTe — M6x|n 2 |y6 — x€|n .
%O{We—xe—ﬂex‘gw}

(4.85) as lim e = yel = 400 as € —0
e—0 e

Combining (4.83), (4.84) and (4.85) we obtain that

—ns2 7= 1
(,u6 ue(ye)) SO ——ow as € — 0

|ye - 17€| 27se

And
_n=2
|Ye — x€|n72 pe * ue(ye) <O(1) as e—0

This proves (4.81) and ends Step 2.2 and then Step 2. O

Step 3: In (4.81) we have obtained that there exists C' > 0 such that for all e > 0

n—2
2 — 2" P pe T ue(z) < C for all z € Q

By definition (4.14), it then get that for all e > 0

n-2 n—2

(M2+|$—$E|Q>TM;TUE($) <C for all z € Q

This completes the proof of Theorem 4.6. O

4.7. Localizing the Singularity: The Interior Blow-up Case

In this section, we prove the following:

Theorem 4.7. Let §2 be a bounded smooth oriented domain of R", n > 3 ,
such that 0 € 99, and let a € C*(Q) be such that the operator A + a is coercive
in Q. Let (S¢)eso € (0,2) be a sequence such that lir% se = 0. Suppose that the

e—
sequence (Uc),o € HT o(Q), where for each € > 0, u. satisfies (4.4) and (4.5), is a
blowup sequence, i.e

ue — 0 weakly in HIQ,O(Q) as €—0

We let (p1e)e € (0,400) and (z¢)e € Q be such that

n—2

pe 2 =uc(z) = I;l&)ziue(x)

We define xg := lim._,g z. and we assume that

g € Q is an interior point.
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Then
s )
s
—_— =2 K (4,0)? =4
lim "2 Tog (1710) 56w3 K (4,0)* a(xo) for n
llg(l) 2 = —nb2K(n,0) /29% (zo0) forn =3 ora=0.

where g3 (xo) the mass at the point xo € Q for the operator A + a, where

1

1
dn:/ ; —5 dx forn>5; b, =
i (14 7y) i (14 2) 7

and ws is the area of the 3- sphere.

The proof goes through six steps.
Step 1: We first state and prove the celebrated Pohozaev identity.

Lemma 4.7.1 (Pohozaev Identity). Let U be a bounded smooth domain in R™,
let po € R™ be a point and let u € C*(U). We have

(4.86)

_ 2 _
/((zpo,Vu)+n2 2u> Au d:z::/ <(xp0,u)|v; — <(xp0,Vu)+n2 2u) (%u) do
U ouU

here v is the outer normal to the boundary OU.

ProOF. Integration by parts gives us

/((m—po,Vu)—f—n;Qu) Aud:v:—/((x—po,Vu)—i-n;Zu) 0;0;u dx
U U

:/8j ((a:—po,Vu)+n;2u>8judx—/((a:—po,Vu)+n;2u>8yuda
U U

1 ) _
= g/|Vu|2 dz + 5/(x fpo)J5j|Vu|2 dz — / <(xp0,vu) + n u) d,u do
U U oU
. 2 )
:/aj ((x—po)jlvgt> dac—/((x—po,Vu)+n2 u) oyu do
U oU
2 —
:/(x—po,y)@ da—/<(x—p0,Vu)—|—n 2u) Oyu do
U oU
2 —
~ [ (e-mn T~ (@ mvw + 20 o) ao
U
O

Step 2: Next using the above Pohozaev Identity we obtain
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Lemma 4.7.2. Let By, (5) C 2. We have for all e >0

B _ 2" (s.)
(a+ (.I xe,Va)> ug dl‘ _ Se(’fl 2) / Ue (33,33‘6) dl‘ —

2 2(n — s¢) |z|se  |z|?
B (9) we (
4.87)
2 2 1 S*(SE) -2
(x — e, v) ('v; | + a;te - 2*(s¢) u|x Se do — / ((m — e, Vue) + n 5 u6> Oy ue do
0Bq. (9) 9B, (5)
PROOF. One has for 1 < j<n
2" (s¢) 2" (se)—1 2" (se)
Py Ue :2(n—se)uE Do — s ij
e n—2  fzfse 70 T z[e?
And so
2% (se)—1 2" (se) 2" (se)
Ue n— 2 . Ue se(n — 2) ue ) .
- sav € = — de 10; J — e J
=t V) T = g ( ER ) P CETIFEER

2% (s, 2% (s, 2% (s,
n—2 (z — 2.)10); ul (%) se(n72)u6( )7s€(n72)u6 (S)xj:cj
2(n — s¢) R WL 2(n — s¢) |zl 2(n — s¢) |x|3<t2 €

Integration by parts gives us

uZ 51 n—2 ; ul ()
(r — 2, Vg ) — — dr = ] / (x — x)0; <Eé> dx

|z 2(n—s |z
Bre(®) B,.(9)
se(n—2) / uz se(n —2) / g ) (2.2,) di
2(n — s¢) EE 2(n — s ]tz T
Bz (9) Bz (9)
—n(n —2) ul () n—2 W2 )
- d - de
2(n — sc) / EE Ty / (=2 r)
Ba () 9B, (9)
se(n—2) / 2 (o) se(n —2) / w2 )
e) d
Yomsg ) T A e) ) e
Bee(9) Bq, ()
__(n-2) ug ) Se(n—2) u? (5
= — 2 |./L' Se dx_ 2(”—86) |.’I; Se+2 (1’71'5) d.I
Bz (8) B.. (5)
2*(85)
1 u
+ * / (.’L‘ Z‘e,V) do
2 (S) | Se
9Bz, (0)

For € > 0, u. satisfies the equation

2 (51
Au, = — — au, in B, (0)

Se

|
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Therefore
-9 _9 g*(sf)—l
/ ((x — e, Vue) + i u€> Au, dx = / <(x — e, Vue) + i 5 u5> (u BE — au, | dx
x|
Bq (9) Bq ()
2% (se)—1 2" (se)
c — 2 Ue -2
= / ((x - xe,VuE)u FE +Z 5 u|m|se — (z — z¢, Vue)au, — o 5 auf) dx
Ba (%)
(n—2) / uz*(se) se(n —2) / ug*(se) 1 / ug*(se)
= — d - € d — dey d
5 TR s FEES (z,z.) dr + 0] (z — xe,v) e %
Bz (9) Ba (%) 9Bz, (8)
— 202 ) —2
+ / (n 5 u|x o (x — ze, Vue)aue — n 5 auf) dx
B.. (8)
2" (se)
J(n—2 2 )
= —;(7(;153 / F;u%ﬁ@’xf) dx — / ((ac — Ze, VUe)au, + nQau§> dx
Ba (8) Bz (9)
I 200
+2*3 (.T—xé,l/) |x$E
0B; (%)
sen=2) [ ue ™ (x— 2, Va)\ ,
:72(717_86) / W(I,l‘e) dx+ / a+f Ue dl’
Bq () Ba (9)
2*(35) 2
1 €
+2*(s) / (x—xg,u)ule do — / (x—xe,u)% do
8B, (8) 8B, (8)
Using the Pohozaev identity (4.86) we then have the lemma. O

Since xg € , let § > 0 be such that B,,(30) C Q. Note that then lir% |ze|® =1,
e—
and it follows from (4.17) that lil’I(l) uie =1.
€E—>

We will estimate each of the terms in the above Pohozaev identity and calculate
the limit as € — and 6 — 0. It will depend on the dimension n. Let G* : Q x
Q\ {(z,z) : € Q} — R be the Green’s function of the coercive operator A + a
in © with Dirichlet boundary conditions. For existence and the properties of G*
see Ghoussoub-Robert [9] (Theorem B.1) and Robert [17]. For a fixed point z, let
Ge(y) = G*(z,y) for y € Q\{xz}.

Step 3: We prove the following convergence outside xg:

Proposition 4.7.1.

n—2

e 2 ue — by GG, in CL.(Q\ {zo}) ase—0

1
where b, :/ —5 dx

|2|2 2
R (1 + n(n—2))
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ProoOF. Step 3.1: We fix yg € € such that yg # xo. We claim that
n—2

liII(l) e 2 uc(yo) — bG35, (o)

€E—>

1
where b,, = / — dx.
|z|2 2
R (1 + n(n—2)>
We prove the claim. We choose ¢’ € (0,9) such that |xg — yo| > 36" and |zo| > 3¢".
Fom Green’s representation formula we have

_n=2 _n—2 g (se) 1(£C)
pe * uc(yo) = pe * /Ga(%yo)i dz for all € >0

ER
Q
2% (s¢)—1 2% (se)—1
_n=2 Ue xT n—2 a Ue x
i [ eew D e [ eew D
Ba. (8 ol O\B., (5) ol

In theorem 4.6 we have obtained that there exists a constant C' > 0 such that for
all x € Q,

n—2
ue(x) < Cilnz for all € > 0. Then using the estimates on the Green’s function
G* we obtain as € = 0

2" (se)—1 —
Ue (x) n+2(1=se) 1 1
G(x, dr = O(ue 2 - =
(37 yO) |$‘s€ X (H“ |.’L‘ — y0|n_2 |J)|56
O\ Bq,(5) N Bg (8)
2—se Se
2
71+2(;7Se) 1
O
n+2(l—se)
= O(Me 2
So we have for € > 0 small
2% (s¢)—1
_n=2 _n=2 a Ue €T R
i T = [ 6w de 0 )
By (87)

Recall our definition of v, in theorem 4.4. With a change of variable we then obtain
from Theorem 4.4

- 2% (se)—
2 Ue (.T) dm+0( 2_ Ss)

| ]

n—2
2

ue(yo) =pe > / G“(x,y0)
Bzgw')

] ARC)]
= ( ) / G (ac + ke, yo) - do 4+ O(u™™)

,LL T ke
‘ o] T Te]®

Lhe

Bo(8'kY)

We have that hm Igifl = 1 and from theorem 4.6, it follows that there exists a

constant C' > O buch that as e = 0

n—=z n—2
2 2

2

- - < -
kN (2 =¢ 1+ L




140 4. BLOW-UP ANALYSIS

and so
1 - 2 \™ 1\ 2>\
0N a) < O | <1 " > =¢ ( 2) <1 ! >
Lt il (=) I+l (=2
2\ 1/2
The integral — dz is finite. Also we have that I:v i I:v K ‘ <

\w|2 2
3 and \Ga(errk:ex, yo)| < 57—z for all & € By(6'k_*). Therefore by Lebesgue dom-
inated convergence theorem and Theorem 4.4 it follows that

. _n=2 o . o 1
lng i g0) = G (oo, wo) [ 0 e = 6o [ —

R™ R" (1+ n('§f2)) ’

This proves the claim and ends Step 3.1.

Step 3.2: Let Q' cC Q" cC Q\ {xo} be a compactly contained open sets. From
_n=2
(4.4) it follows that for € > 0 the functions pe ? wu. satisfies the equation

771.;2 77?2 2 s, (,U'E_ )2 (se)—1 ) Vo
Alpe * ue) +a(@)(pe * ue) =pg PR in 7'(Q")
x

n—2

pe 7 ue=0  on Q"N

In Theorem 4.6 we. have obtained that there exists a constant C' > 0 such that
for all x € Q, pe = ue(x) < for all € > 0, and so [Juc||p~@) = O(1)

_c
|z—xn=2

n—2
T2 )2 a1
as € — 0 and p2~ 5+

€ > 0 small. Then from standard elliptic estimates (see for instance [14]) it follows

€ LP(Q") uniformly for some p > n and

that ||pe = Uellcray = O(1) as € — 0. Hence the sequence (pc N u€)€>0 is
precompact in C''(Q’). In our previous step we have show that hm e = ue(y) —

bnG, (y) for every y € €', therefore it follows that

n—2

lim pe % ue — b,GS in C1(Q)
e—0 0
This completes the proof of Proposition 4.7.1. O
Step 4: Next we show that
2" (s¢) %
. ue 7 (x,xe) 1 72
4.88 1 de = | ————
(488) i [ e T = (e

Ba (%)

PrOOF. Recall our definition of v, in Theorem 4.4. With a change of variable
we have

2% (s¢) Se nTiz 2" (s¢)
/ Ue (x,2) |z, / (e + ke, ) ve(x)
dr = = = dz
|zl [a]? pe [T + keawl® | 2o | ke o[
/ke)
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Se
_He

s
|ze|oe

We have obtained earlier in theorem (4.4) that lim =1, lim = = 400 and
e—0 e—0 e

lim |k€ = 0. Also we have for all z € By(d/k.)
e—0 Tel
Te Te ke ke T ke T ke 1
=< |tz t el < i+ 2t = < |+ 2|+ 3
|| el |z || |ze| || || |ze| |zl 3
So for all z € By(d/ke)
Te L ke ol > 2
lze|  fze| [T 3

Then passing to limits, and using Theorems 4.4 and 4.6 we obtain by Lebesgue

dominated convergence theorem
2" (s¢) . PR
dr = / v¥ dr = ( >
R’VL

Ue

1
K(n,0)

(z, )

gg% |z|2

Bo

Se

|z
(9)

€

This proves (4.88) and ends Step 4.

Step 5: We prove Theorem 4.7 for n > 4.
Using the Pohozaev identity we have obtained in (4.87) that

(x — 2z, Va)\ Se(n—2) / uf*(se) (x,2)
WZ% V) 02 4z — dz =

/ (” 2 )T ey ERNEE

Bz (9) Bo (0)
(z — ) Vuel* | aue 1 “37(5) do — (& — e, Vi) + 22
T — Te,V 5 5 (s [ o T — Te, Ve
OB, (6) OB, (0)
Step 5.1: we assume here that n > 5. We have for ¢ > 0
2" (s¢)
_9 (x —xe,Va)\ o _98e(n—2) / Ue (z, )
dr — d
e (“* 2 )“ STy a2
B, (6) z (6)
IV ( —n2 )|2 2 ( 2 )2*( )

=yt _ He = Ue Pt R ) ) Ml I

He (T —xe,v) ( D) + 2(,“6 Ue) 2% (s,) || > o

9B, (5)
(4.89)
4 _n=2 n—2 _n=2 _n=2
e (6= ¥l T )+ 2520 % 0 ) 0 ) o

0B, (9)

First we calculate the right hand side of the above equality. Recall our definition
of v, in theorem 4.4. With a change of variable we obtain

9 x — e, Va) ke T+ k.

w? dx =

u6> Oy ue do

x))

He € Lhe 2

) )" / (a(we + ko) 4 et Val

Bo(6kZh)

/ (a-l-( 2

B.. (%)

(

>v62 dz
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We have that 11 im u = 1 and from Theorem 4.6, it follows that there exists a
constant C' > O such that as e = 0

n—2

2 n-2
1 1
1+ (fbe) |.Z‘|2 L+ n(n—2)
1
and so v2(z) < % We have that for n > 5, the integral/ —5 dx
(1+5t5) 1+ n(‘zg))
is finite. We let
1
dp, = / — dx forn >5

|:1:\2 n—2
B (14 725
Therefore

lim lim |2 / <a + W) u? da| = d, a(xo) forn>5
5—0e—0 2
Ba (9)

Passing to the limits as € — 0 in (4.89) we then obtain using proposition 4.7.1 and
(4.88)

*

d 1 1 1 2% 2
o alao) = lim o <K<n7o>) B

and so

eh—%E =2"K(n, 0)2* 2d,, a(zo)

This proves Theorem 4.7 when n > 5 and ends Step 5.1.
Step 5.2: We now deal with the case n = 4. We have for ¢ > 0

-2 i -2 2" (se)
He / (a+ (z xe»v‘I)) uf do — He Se / Ue . (x,x;) de
log (1/k.) 2 log (1/kc) 4 — s¢ . |z]se |z

Te Te

_ 1 IVutud® ap oy vy 0 (e ue)® )
- lOg (l/k’ﬁ) / (LC {EE,V) ( 2 + 5(#6 uf) 2*( 6) |JL‘ Se do

9B (5)

. _ 1 - 1
(4.90) log (1/k) / (& — 2, V(ps " ue)) + p M ue) 8, (M ue) do
9Bz, (8)

With a change of variable we obtain

—2
Mo (xr —zc,Va)\ ,
Tog (1/%2) / (“+ 5 )“ du

)

Te

Bo(6k1)
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We have that liH(l) ﬁ— = 1 and from theorem 4.6, it follows that there exists a
e— €
constant C' > 0 such that as € — 0
1 1
ve(z) < C <C EE

2 —
1+(ﬁ) 22 1t ey

and so 'US(Z‘) S W ‘We have
n(n—2)

1 1
lim | ——— / ——— dx| = 64ws
-0 | log (1/k) (14_@)2
Bo(Sk 1) 8

Hence

-2
. . Me (‘T — Te, va) 2 _ _
(%1_1}%) lgr(l) Tog (1) / (a + — > uZ dr| = 64dwsa(xg) for n = 4.

Te

Passing to the limits as € — 0 in (4.90) we then obtain using Proposition 4.7.1 and
(4.88)

2
3 1
N L ; —0
wga(ﬂUo) EE)% 4#3 log (]_/]{)5) (K(470)>

and so

s
lim ———o——— = 256wz K (4,0)?

B P log (1) 200ws (4,0)" alo)

This proves Theorem 4.7 for n = 4, and therefore ends Step 5.2 and Step 5.

Step 6: We now deal with the case of dimension n = 3. Recall from the introduc-
tion that we write the Green’s function G as

Goly) = ——

=———+gi(y) forallz,y e Q, z#vy
Az — y|

and g¢ € C?(Q\ {z})NC%%(Q) for some 0 < @ < 1, and g“ is called the regular part
of the Green’s function G*. In particular, when n =3 or a = 0, my;(€,a) := ¢g%(x)
is defined for all x €  and is called the mass of the operator A + a. Note that for
any z € (), g% satifies the equation

Ags +aG35 =0 in Q\ {z}
—1

gy = ———  ondQ
walz — 9|

For any x € ), we claim that

(4.91) lim  sup |y —2||Vgz(y)| =0
r—0 y€IBy(r)

The proof goes as in Hebey-Robert [12]. We omit it here.
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We now exploit the Pohozaev identity. Using the Pohozaev identity we have ob-

tained in (4.87) that

€ Te

[Vuc >  au? 1 w2 n—
(x—xE,V)< 5 + 5 _2*(3) B do — (x — xe, Vue) +

8B, (6) 9Bz, (8)

Multiplying both the sides by u-! we obtain

(x —ze,Va)\ o Se(n—2) / w2 () (v,2¢) ,
[ (o OG0 utae - G [ U =
)

Ba(9)

(x — z¢,Va) —1/2. 2 Se / uZ (5 (
T be VE) )2 dx —
/ (a " 2 (e Pue)” do 2p(3 — se) |z[5
)

2 2 2*(se) |z|3e
OBz, (0)
(4.92)
_ n—2
a / <(£L’ — Tey V(Me 1/2’&5)) + 7(/"”6 1/2u€)> g ('u’ 1/27.L ) do
9By (9)

It follows from Proposition 4.7.1 that

—1/2 —1/2 —s —-1/2 *(s
@ —zu1) (we PugP | e Pue?  p2mre (u P o

' V(e Pud) (e Pud)? 2 (pePu)? )
1 - de - =
iy (z —ze,v) ( 9 +a 5 2 (s5.) e
9Bq (9)
; _ n—2, _ B
~ Iy (@ — 26, V(e Pue)) + =5 (g %e)) 0 (n?ue) do
9B..(5)

2 2

it [ (e-mn (FBE 4 San)?) - (@-mver)+

OBay (5)

5|VG20|2 ) (I—xo,VGgO)Q n72<.’L‘—$C(),VGgO>

0% Gay2 _ _
+2Es,)

2 0 2

2
u6> Oy ue do

— 2G§0> aqu;[)) do
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One has for n =3

1 1

Gy (@) = (n — 2)wn_1 |z — 0|2 + Gao (@),
1 1 (v — x0)? .
0,G () = — 0,0, for 1< j <n,
J o(x) W1 |xf:v0\”*1 |$75E0| + 79 o(x) orl=jg=mn
1 1 1 2 (x — 20, Vga,) 9
VG - - o \% ’
| mo( )l w 1|.’L‘—LL’0|2n 2 W1 |£C—.T0|n_1 |.’L‘—$0‘ +| gﬂco(x”
1 1
(Z‘ — Zo, VGévo ($)) = _w 1 |IL’ _ xo‘n72 + (-T — X0, ngo (.’IJ))’

(x — x0, VG, (2))* =

(= 20, VGay (2))Gay (2) =

Then we have

1 1 1 2
- - 7v T +(r—x 7v 2o (T 2’
w?z—l |z —wo|>" ™ wp—y [ — @[ 2 (@ = 20, Vao (2)) + 05 Vao (7))

1 1 1 1

(n—2) e =zt wh |m—x0|”_29x°

1 1
(n —2)wy—1 |z — zo|"2 (& =20, Voo (7))o (7)

()

+ (= 20, Vgay (2))

2 |VG |2 a ( LL'o,VGa ) TL—Q( xo,VGIO) a
b; 572 (G ) 5 5 5 G
9B, (8)
1 1 Vs, (@) | a 5(g8,)°
_ 12 _ _ a o) _ a Zo
= b3 2w2§3 D d? (x — 20, Vg, (z)) + 672 + 20 +agy, + —5 do
9B., (8)
1 9 . (x — 20, Vg2, (z))?
+ b3 25 + D d? (x — x0,Vgy, (7)) — 3 do
OBy (8)
b2 Ll e a0, Vet (@) — — (7 — 70, Vg ()9 (2) do
3 20283 | 2wp02 7m0 2002 0>V 9o 20 02 V2 ()95,
OB, (8)
1 1 a 6(g2,)?
_ 12 a _ a el a zg
= b3 %ogd? G () do + b3 / 2ond? (x — 20, Vgy, (7)) do+ b3 / 2 +agy, + do
9B, (6) 9B, (9) 9B, (6)
Vge (z)]?  (xz—m0,Vgl (z))* 1
o [ [Pt BN L vt (et (0] do

8B, (9)

Using (4.91) it then follows that

lim b2
§—0

OBay (5)

b2

= Ega:o (.’L’o)

f

(x — 20, VG2 )? n—2(x—x0,VGS)
) 2 )

da

—(Gfl. )2 _

Zo

Gy, do
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In theorem 4.6 we have obtained that there exists a constant C > 0 such that for
all x € Q, uzl/QuE(x) < for all e > 0. So we obtain

Ifrwl

/ ’a+ (z — x;,Va)

( —1/2 dl‘ < C / —1/2 2 dr

Be (9)

<C’/ de < Cé

And hence we have

lim lim / <a+ W) (7 ?u)? dz =0

§—0 e—=0
Bz (6)

Plugging all these together in (4.92) and using (4.88) we then have

Se _ _ 3/2
lim e 3b3ma (2, a) K (3,0)

This proves Theorem 4.7 in the case n = 3.

4.8. Localizing the Singularity: The Boundary Blow-up Case
This section is devoted to the proof of the following result:

Theorem 4.8. Let Q be a bounded smooth oriented domain of R", n > 3,
such that 0 € 09, and let a € C*(Q) be such that the operator A + a is coercive
in Q. Let (s¢)eso € (0,2) be a sequence such that liH(l) se = 0. Suppose that the

e—

sequence (Ue),o € HT o(Q), where for each € > 0, u. satisfies (4.4) and (4.5), is a
blowup sequence, i.e

ue — 0 weakly in Hio(Q) as € =0
We let (pie)e € (0,+00) and (x)e € Q be such that

n—2

te 2 = ue(xe) = maxuc(z).

zeQ
We define xg := lim._,g x. and we assume that
xg € 09 is a boundary point.
Then
(1) Ifn=3 ora=0, then ase =0

sed(ze, )2 n"Y(n —2)" 1K (n,0)"/?

e—>0 T 2 o on—2

(2) Ifn=4. Then ase — 0

% (K(4,0)72 + o(1)) — <d($f€(’)ﬂ)> (32ws + 0(1)) = 2 log <d(f”kam> [64wsa(zo) + o(1)]



4.8. LOCALIZING THE SINGULARITY: THE BOUNDARY BLOW-UP CASE 147

(3) Ifn>5. Then ase — 0

02 (02 o)~ () (a2 o)) = 2 ) + o)

2n T, 00

where

1
dy, = / G dx forn>5 and dy = 64ws
Rn (1 + n(§—2)>

4.8.1. Convergence to Singular Harmonic Functions. Let G®: QxQ\
{(z,2) : € 2} — R be the Green’s function of the coercive operator A + a in
Q with Dirichlet boundary conditions. For existence and the properties of G* see
Ghoussoub-Robert [9] (Theorem B.1) and Robert [17]. For a fixed point z, we let
Ge(y) = G%(x,y) for y € Q\{x}. One has the following result for the asymptotic
analysis of the Green’s function G¢, the proof of which is in Proposition 5 of [17]
and Proposition 12 of [7].

Theorem 4.9 ([7,17]). Let (zc)eso € Q and let (1e)eso € (0,4+00) be such
that lim r. = 0.
e—0
(1) If
lim d(z.,00)
e—0 Te

Then for all x,y € R™, x # vy, we have that

= 400

1
li n—QGa , _
lim 7 (Te + e, Te + 7ey) )T

where wy,—1 is the area of the (n—1)- sphere. Moreover for a fized x € R™,
this convergence holds uniformly in C? (R™\{z}).

(2) If
gg%d(x%am =p € [0,+00)
Then 251(1) xe = x9 € 0. Let T be a parametrisation of the boundary OS2
as in (4.18) around the point p = xo. We write T 1(x.) = ((z)1,2)).
Then for all x,y € R™ N{x; <0}, x # y, we have that
lim #2726 (T((0,27) + rea), T((0.20) + )
1 1
B O O O

where m : R" — R™ defined by 7((x1,2")) + (—x1,2") is the reflection
across the plane {x : x1 = 0}. Moreover for a fized x € R™, this conver-
gence holds uniformly in C? _(R™\{z}).

Next we show that the pointwise behaviour of the blow up sequence (u¢)eso
is well approximated by bubbles. Note that the following proposition holds with
xg € §2, in the interior or on the boundary.
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Proposition 4.8.1. We set for all e >0

n-2
i Pl
U@ =\ o E=r
kﬁ + n(n—2)

Suppose that the sequence (uc) o € H1270(Q), where for each € > 0, u. satisfies
(4.4) and (4.5), is a blowup sequence. We let g := limeoxe. Let (Ye)eso be a
sequence of points in 2. We have

(1) If hm5~>0 Ye = Yo 7& Zo, then

n—2

lim /J/; 2 ue(ye) = bnGa(xmyO)
e—0

where bn = f ﬁ dz.
x 2

R™ (1+n(n—2)>
(2) Iflimeoye = o and liH(l) d(xe,00) > 0, then
e—

w(ye) = (L+0(1))Uc(ye) ase—0

(3) If lime_yoye = 2o and lir% d(ze,0Q) =0, then
e—

u(ye) = (1 +o(1)) (Ue(ys) - Ue(ye)) ase—0

where for e > 0

n—2

- k

Ué(x) e
2 | le—mr(zd)l?

kﬁ + n(n—2)

with 1 = T omo T, T is a parametrisation of the boundary O as

in (4.18) around the point p = xo € I where liH(l) Te = xp € 0. And,

e—
m: R" = R" defined by w((x1,2")) — (—x1,2’) is the reflection across the
plane {x : z1 = 0}.

PROOF. It follows from Green’s representation formula that

u? G971 ()

ue(ye) = /Ga(l‘,ye)i dx forall e >0
Q

EE

Case (1), that is lim. oy = yo # 0, is dealt in Proposition 4.7.1. We now deal
with the case

lim |z —ye[ = 0.
Step 1: We claim that

w2 so-1

a e (z)
J G%(x, ye)T dz

. . N\Bq, (Rke)
(4.93) RETOO gg% Ue(ye)
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PRroOF. It follows from the estimates on the Green’s function G® that there
exists a constant C' > 0 such that for all € > 0

2% (s0)—1 2% (s.)-1
€ 1 €
Ga(x’ye)ui(x) dr < C / e “ @) 4

|£L‘ Se y€|n72 |IZ’ Se
N\ Bg, (Rke) Q\B., (Rpe)
<C / (uf(l‘)>s6 1 ” (x)2"(sg)—1—s€ dx
- |z| |z — "2
S\ Ba, (Rpie)

Using Hoélder inequality and then the Hardy inequality (4.8) we then obtain for all
e>0

2 (501
G (2, ye)—

N\Bo (Rpe)

@) 4.
|z

2—se

Se/2 2

Jue(z)]” 1 (2 (50)1-5.) 52
SC | |2 d.’L' 71’7,72 ’LLE(,'E) € €/ 2—se dSC
T
Q

T — Ye
Q\Bz (Rpte) | vl
9 \2
<C () /|Vue\2 dx
n—2
Q

The sequence (u)eso is bounded in Hf (), so it follows that there exists a constant
C' > 0 such that for € > 0 small

s¢/2 2 2

1 2o

v
O\Ba. (Rp.) & =yl

—2

ul " a) 1\ : :
G (z,ye) ———— dx < C / ﬁ we ()@ 1= gy

|£U . ‘x — Ye
O\ Bz (Rpe) O\ Ba, (Rpue)

By the strong pointwise bound on u. we then have for € > 0 small

uz*(s‘)fl(:ﬂ)

Ga(% yﬁ) | dr <
x|%e
O\B.. (Rp)
2—s¢
_2 . n—2 ?
1 2—s¢ . (2 (56)*1*56)m
C / T =2 (2M2) dx
|z — ye pe o — x|
Q\BmE (Rpse)
Let

1
De{zew:uyev u+xy}

-2
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We split the above integral into two terms

2 n—2

1 Z-se (2% (se)—1=se) 3=,
- % dx =
|x—y6‘ ‘LL6+|1'*I5‘

O\Bg (Rpe)

n—2

1 ﬁ e (2% (se)—1=se) 5= J
e — — x
|z —y " ? <u?+|x—xel2>
Dem(Q\Bze (Rpe))

2 * n—2
1 3 se e (2% (se)—1=s¢c) 5=
+ / T T — 22 dr
‘J;—y€| /Je+|x (E5|

(R™M\D)N(\ By (Rpe))

We have for some constant C' > 0

2 . no2
1 =5 e (27 (se)—1=se) 5= J
L _ He T
|z — ye" (M2+$_5’3e|2>
DN (Q\Ba, (Rpie))

§ C / ( e >(2*(s€)—1—sf);_‘j€ ;
= ey 24— 22 r
(2 + e — el?) e+ le —ad

R"\Bwe (Rﬂe)

n_7—2 (2*(86)_1_86)/”_7_2
e 2—se / 1 > 3 sc
<C|——""" —— dz
- <(u?+|we—yslz)) <1+|$|2
R”\Bo(R)

On the other hand there exists C’ > 0 such that for z ¢ D, we have for € > 0

Iye - m6|2 + Mg < C/ (|aj - .’1?6|2 + /Jg)
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Consequently for some C' > 0

2
1 2-se M (2% (se)—1=5¢) 3
- - e dz
@ — ye|" (M?+|ﬂf$e|2>

(2*(56)71755)% 1 C—
—_— dx
./ <x - y5|"2>
(Rn\De)m(Q\Bace (Rue))

2
(2" (se)—1—s¢) 5= ?e 1 2=s¢
/‘ <x—yW”> o

|z—ye| <54/ p2+]zc—ye|?

(RM\D)N(Q\ Bz (Rpse))

n—2

(2% (se)—2—5¢) 3 Se 5 —nse
ﬂ + |y — 7 |2> (Me + "rG - ys‘ )2(27 <)
€ € €

4—nse
2—s¢

(k2 + [ = yel?) =50
2 +wgfaw e e

4—nse
P 2(2—s¢)
<ﬂ + |ye - $e|2>

Pe=rr

IN

e
° (
/Lg +[Te — yel?

(4.94)

n—2
e 2—se
:O<(/‘2+|xy2> > If e = o (|ze —ye|) as € = 0

In case |z — ye| = O(pe) as € = 0, then for R large , (R™\ D) N (Q\ By, (Rue) =0
for all epsilon € > 0. So (4.94) always holds Combining, we then have for ¢ > 0
small

2% (se)—1
“ Ue T
G () e @)
Q\Bre (Rﬂe)

I an 1 (2*(36)_1_86);—125
(i 7 (i) e
(12 + 7 — yel?) 1+ |z[?

"\Bo(R)
2—se
< CUcdye) (er+o(1)) 7
where hm er = 0. Passing to limits as e — 0 and R — +o00, we obtain (4.93).

—400

This ends Step 1. (]

BE dr <
l‘é

2—se

We have then for € > 0 small and R > 0 large

2 (S ) 1(:1;)
welyl) = /) G ) " i (0(1) + ) Uely)
BIE(Rk )
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with a change of variable this becomes

n—2 n—2 *
ke 7 e Ye 2\ 62 (Se)_l
Ue(Ye) = < ) Uc(ye) / <k€2 + M) G (Ye, Te + kex)v—(m)s dx

He TL(’I’L—2) ZLe 4 %l‘

EN

Bo(R)
+ (o(1) + €r) Ue(ye)

Step 2: We assume that

(4.95) lye — x| = O(k.) as € — 0.

Let 0. = Y=<, for ¢ > 0 and let limf, = 6. Let K be a compact subset of
€ e—

R™\ {6p}. From theorem(4.9) it then follows that as e — 0.

; + (1) ;
(n—2wn ) o — B2

uniformly on K. Using the upper bound on G*, Lebesgue’s dominated convergence
theorem and |z|/ke > d(z¢,00)/ke — +o00 as € — 0, we have as ¢ — 0 and
R — 400

ke n2 ] 2 2" (s¢)=1
ue(ye) = ( ) Ue(ye) / (k‘f + M) G*(Ye, e + kgx)v—(m)se dx

; n(n —2) e 4 ke
Bo(R) T feg®

‘mel
+ (0(1) + 6R) Ue(ye)

k?_Q G*(Ye, e + kex) = (

= _— 1 0 2% —1 d 1 U€ )
(n—2)wy—1 / ( +n(n—2)> [z — 6|2 * (x) dz +o(1) +er | Ue(ye)
Bo(R)
1 \‘90|2 = 1
= -_ 1 A d 1 Ue .
(n —2)wn—1 / ( -2 |z — G2 v(@) dr +o(1) +er | Uc(ye)
Bo(R)
= (1+o(1) +er) Uc(ye) by using Green’s formula forv.
We remark that in case 1ir% d(z.,89Q) = 0, U, are well defined and one has ggz; =
€E—> . e

o(1) as € — 0 if |yc — z¢| = O(kc). This proves Proposition 4.8.1 when (4.95) holds
and ends Step 2.

Step 3: We assume that
(4.96) lim =< —

Let
Te = |ye - xe‘
Then r. = o(1) as € — 0. For x € By(R) we define for € > 0

A _ k2 |y€ B ‘rG‘Z 7 G k
R,e — € + n(n — 2) (967335 + ex)

d(ze,000) _
~ . = +00.

Step 3.1: We assume that lim
e—0
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Let f = Y~ for € > 0 and let lim #. = 6y. Then || = 1. We can write as € — 0
e e—

n—2

Ane= (somgrto)) G b )
= r r r
R,e n(n — 2) o € Te € r y Te eVe

€

Then from Theorem 4.9 we have that

1 1
ll_I)%AR e(z) = (n(n —2))*5 (0 —2)w, 1

uniformly for all x in any fixed compact subset of R™. This ends Step 3.1.

d(z.,09Q)
Te

Step 3.2: We assume that lirr(l) =p€[0,+0).
e—

In this case the functions U, are well defined. Let zo € 99 be such that lin(l) Te — Xg.
e—

Let T be a parametrisation of the boundary 9 as in (4.18) around the point p = .
We write T~ (z.) = ((we)1,2%) and T (ye) = ((ye)1,y.). For € > 0, let

Xez((:UE)l,O) and Y:<WM>

Te Te Te

Then we get using Theorem 4.9 that for uniformly for all z in any fixed compact
subset of R"

1 2
A — 1 n—2a
R,e ( (Tl — 2) + O( )) Te G (me + kee, ye)

PTG (T((0,20) + e X), T((0,27) +7eYe))

1 1 n (1)
Nwm \ Yo — X2 Y. —m(X—2) " °

o)™
SOM
( o) G (Hé%)“

since Do7 is an 1somctry. Indepcndently we have

~ n—2
Ue(ye) _ <n(n = 2)k? + |y — 7TT(ff/e)|2> :
Ue(ye) n(n —2)kZ + |ye — z|?

—2

[ T((ye)1,ye) = T(=(z, @ e)lz)
T ((ye)r, ye) = T ((we)r, z0)[?

oy (M) — ()P
‘(”“”<|<yel,ye S )

e ()

So it follows as € — 0

AR7€ = 1 n—2
(n(n — 2))T 2)wn—1

This ends Step 3.2.

— (1o

> +0o(1)
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Since for all R > 0

. 1 n—1R"
/UQ_Idx: / Av dx = — / 81,1)c1lc7:fw+2
n (1 + n(n—2) )n/
Bo(R) Bo(R) 0Bo(R)
we obtain Proposition 4.8.1 in all the cases. O

Using Proposition 4.8.1, we derive the following when the sequence of blowup
points converge to a point on the boundary

Proposition 4.8.2. Let (uc)., € H{y(Q) be such that for each € > 0, u.
satisfies (4.4) and (4.5). We assume that ue — 0 weakly in H{ ((Q) as e — 0. We
let xo :=limeo ze. Let re = d(ze, 00Q). We assume that

limr, = 0.
e—0

Therefore, hH(l] Te =x9 € 0. Let T be a parametrisation of the boundary 02 as in
e—

(4.18) around the point p = xo. We write T (ze) = ((zc)1,2L). For e >0, let

€

n—2 U - (0 /
Ue(z) == Ten;z ue o T((0,2L) + rex) for x € % N{z, <0}
fe * ¢
Then

n—2

limf)e(x)z(n(n—Z))Z’( I ! |n2) in Cioe(R™\ {60})

=0 e N R ()

where

0o = limb., 6. = <(Ie)1,0) eR"
e—0

Te

and © : R" — R" defined by w((z1,2")) — (—x1,2") is the reflection across the
plane {x : 1 = 0}.

PROOF. Since Dy7 = Ig» we have
d(ze,00) = (1 + o(1)) [(we)a

Let 6. be a sequence of points in R” defined by

0, = (<x6)170) fore >0

€

Then it follows that
6o = lim 0. = (—1,0) e R™ and m(6p) = (1,0) € R}
e—0

Let R > 0. 9. is defined in By(R) N {z1 < 0} for € > 0 small. It follows from the
strong upper bounds obtained in Theorem 4.6 that there exists a constant C' > 0
such that for € > 0 small we have

n—2

N 72 2
0<o(x)<C <T((O,x’6) ey $6|2> for x € Byo(R) N {z; < 0}
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For any x € Bo(R) N {x1 <0} we get from Proposition 4.8.1 that as ¢ — 0

, nT72 71;2
ri- ke k.
Ue(z) = (14 0(1))—= , 5 - >
o |\ k2 TQztren)—a] [T +rea)—n7" )|
e 2 € + n(n—2) k? + D) T
(4.97)
n—2 n—2
ke\ * 1 1
—(1+o(0) () : - —
He ke [ T(O0,xl)+rex)—ac|? ke |7_((01$2)+7"e$)—7f7 (ﬂce)|
+ +
Te n(n—2)r2 Te n(n—2)r2

Fom the properties of the boundary map 7 one obtains that for any x € By(R) N
{1‘1 < 0}:

’T((Ow’e) +rex) — x.

=1 +o0(1)) |z — (()1/7e,0)] ase—0

_ ‘T((O>m/e) +rex) =T ((0,20) +re((z)1/7¢,0)) ‘

Te

and

‘T((O,zi) +rew) — w ()
= (1 +o(1)) |z + ((ze)1/7e, 0)] as e — 0

_ ‘T((O,a:’e) +rex) =T ((0,2)) + re(—(e)1/7e,0)) ’

Te

Recall that in Theorem 4.4 we have obtained lir% l]j— =1 and liH(lJ f— = 0. Passing
€— € €— €

to limits as € — 0 in (4.97), we then have the following pointwise convergence.

(4.98)
o (n—-2)"F (n(n—2)"T
lg%ve(x) - |.’L‘ — (170)|n—2 - |.’E + (170)‘71_2 for z € (BO(R) \ {(170)}) n {‘Il < O}

For i,j =1,...,n, we let (Ge)ij(x) = (O;T ((0,2)) + rex),0;T ((0,2.) + rex)), the
induced metric on the domain By(R) N {z; < 0}, and let A, denote the Laplace-
Beltrami operator with respect to the metric g. From eqn (4.4) it follows that given
any R > 0, v. weakly satisfies the following equation for € > 0 sufficiently small

B 5 2—se ~2%(s¢)—1 .
Ag. B + 72 (a0 T((0,2L) + rex)) o = (L) e i Bo(R) N {ay < 0}

Te

(4.99) ne
e =0 on By(R)N{z; =0}

Let D CcC R™ \ {y} be an open set with compact closure. From(4.98) it follows
that there exists a constant Cp > 0 such that for all € > 0 sufficiently small

0 <o (x)<Cp for all z € D
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Again from the properties of the boundary chart 7T, it follows that for any p > 1
there exists a constant C, > 0 such that

('D )2*(86)—1 P 1
/ — dx < CID / Sep dz

T((0,20)+rez) | ¢ (0,z1)

DN{x1 <0} Te Dﬂ{:p1<0}’ e T
1
< / ——— dx
=P ‘&w+m€p
BO(R) Te

Choosing s, > 0 sufficiently small it follows that the right hand side of equation
(4.63) is uniformly bounded in LP(D) for some p > n. Then from standard elliptic
estimates (see for instance [14]) it follows that for any D' CC D |[Ue[|c1.a(py = O(1)
as € — 0, @ > 0 and 9, vanishes on the boundary D’N{z; = 0}. Hence the sequence
(De)eso is precompact in C1(D’). From (4.98) it therefore follows that

n—2 n—2

N (n(n—2)) = (n(n—2))> .
1 e — — Cc (D
B e @or?  ermopr O
This completes the proof of Proposition 4.8.2. O

4.8.2. Estimates on the blow up rates: The Boundary Case.

Suppose that the sequence of blow up points (z,)eso converges to a point on the
boundary, i.e suppose

(4.100) lim z, = zy € 00
e—0
We let
(4.101) re = d(Te, )
Then
limr, =0
e—0

and from (4.25), we have as e — 0

e = 0(T¢) and ke = o(re)
As before, let T be a parametrisation of the boundary 9 as in (4.18) around the
point p = xy. We shall apply the Pohozaev identity for the Hardy Sobolev equation
to the domain T (By-1(,.)(re/2)). Note that since d(m‘ri’eam =1 for all € > 0, so

Br-1(z.)(re/2) € R™ for € > 0 small, and therefore T (Br-1(;.)(rc/2)) C Q for
€ > 0 small. The Pohozaev identity (4.87) gives us

(x —ze,Va)\ o Se(n—2) / uZ (o) (v,2¢) ,
N O SR = o e T

T(Br-i(,(e/2) T(Br-1()(7e/2)
(4.102)
2 2 1 g*(se) -2
(I — Le, V) <|v; | + a;E - 2*(55) ulm Se - <(I — Le, vue) =+ nQu€> auue do

T (Br-1(a,)(re/2))

for all € > 0 small. We will estimate each of the terms in the integral above and
calculate the limit as ¢ — 0. We obtain
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Theorem 4.10. Let 2 be a bounded smooth oriented domain of R™, n > 3 ,
such that 0 € 99, and let a € C1(Q) be such that the operator A + a is coercive
in Q. Let (S¢)eso € (0,2) be a sequence such that lirr(l) se = 0. Suppose that the

€E—r

sequence (Uc),o € HT o(Q), where for each € > 0, u. satisfies (4.4) and (4.5), is a
blowup sequence, i.e

ue —0 weakly in HY () as €—0

We let (p1e)e € (0,400) and (z¢)e € Q be such that

n—2

pe 2 =uc(z) = I;leagliue(x)

Assume that (4.100) and (4.101) hold. Then
(1) Ifn=3 ora=0, then ase — 0

y serm2  nmHn — 2)" 1K (n,0)" 2w,
EE}(lJ ,LL?_Z o 2n—2 ’

Moreover, d(ze,0Q) = (1 + o(1))|z| as € = 0. In particular xo = 0.

(2) If n=4. Then ase — 0

2 14,0 o) — () 0205 +001) = s o () rateo) +o01)
and
s (1 - (;)2 + o(1)> = p2log (T> [4d4 K (4,0)%a(zo) + o(1)]

(3) Ifn>5. Then ase — 0
02 (a0 o) - (1) (U2 o)) < 2 )+ o)

2n Te on—1
and
re \2 2n
s (1 - <|le) + 0(1)> = u? |:n_2dnK(TL,O)2a(I0) + 0(1)]
where .
d, = / e dx form>5 and dy = 64ws

n—2
B (14 72)

PROOF. For convenience we define

. 2 2 1 S*(SE) )
F.=(x —z.,v) (lv; | + a;’te — 3 (s0) u|x — |- ((:L‘ — 2, Vue) + r ue> Oy e
Step 1: We claim that
2—n —2 n
¢ " — 2)"w,
<M‘> / F. do =" (n2 1) Wn-1 +0o(1) as € —0
Te n=

T (Br-i1(a,)(re/2))
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PrOOF. We write 7~ 1(z.) = ((x)1,2%). For € > 0, let

€

n—2 U — (0 /
Ve(z) := Ln% ue o T((0,zL) + rex) for x € 7£ ) N{z, <0}
He ¢

Then from Proposition 4.8.2 it follows that

s (=) (=2 e
25%7)5 - |x — (71’0)|n72 |1‘ _ (1,0)|n72 C’loc(Rf \ {( 170)})

For simplicity we write for z € R™ \ {(~1,0)}

(n=2)"3"  ((n-2)%
|:,C - (_17O)|n72 ‘.%' - (170)‘7172 o

We define the rescaled metric
U—(0,z))

€

Ge(x) =T*g ((0,2)) + rex)) for x € N{z; <0}

With the change of variable x — T ((0,z.) + r.z) we obatin

2—n 2—n
B ] e [ ae
Te Te

3(T(BT*1(IG)(T‘»/2))) 7’(83«16)1,@(%/2))

T(0.0) 4 r) =T (0.00) + v (52,0))

Te

7
Te

OB(@,O) (1/2)

Te

, Vv
Te
83((17‘#)170) (1/2)

€

T (0,2 +rez) = T ((0,20) + e (220))

Te
, Vv

A N
T(0@l)+rez) |

Ge Te

Te

T((0,20) +rez) = T ((0,20) +re (£222,0)) ) ) 2

Te

3B(<me)1 0)(1/2)
(4.103)

T((0.a) +72) = T ((0,20) +re (£22,0)) o I
9 ve

Te 2
83(@0)(1/2) ge

Since DoT = Ig» we have
d(xe,0Q) = (1 4+ 0o(1)) [(xe)1] as e—0
So

e—0
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And it further follows that one always has for € small

1
- <
Tanra [ =2 or #€0B(e ) (1/2)

Te

Passing to limts as e — 0 in (4.103), using Proposition 4.8.2, we get as e — 0

2—n
(’“) / F. do =
TE

(T (Br1(s,)(re/2)))

/ <(z —(~1,0),) @ - ((z —(~1,0), V@) + » 5 21?) ay@) do + o(1)

0 B(_1,0)(1/2)

Let 0 < d < 1/2. Since AD = 0 in B(_1,0)(1/2) \ B(~1,0)(d), applying the Pohozaev
identity (4.86) we have that

Vol

((z—(—l,O),V) _ ((z—(—1,0),w)+ ”;%) aya) do =

8 B(—1,00(1/2)

<(z —(~1,0),v) @ - <(z —(=1,0),Va) + = 2@) zm) do

9 B(_1,0)(9)

and so the map

5 / ((z _(=1,0),v) @ _ ((z —(~1,0),VF) + ”;%) aya) do

9 B(-1,0)(9)

is constant on (0,1/2]. We write for x € R™ \ {(—1,0)}

N )
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n—=2
where h(x) = —% is the harmonic part of 9. We let 8y = (—1,0), v1(x) :=
9(x) and g(z) ;== ———>———h(x). Then one has

n—2 n n
n 2 (n—2)2wp_1 n 2 (n—2)2wp_1

- 1 1
@) = (n — 2)wp_1 |z — |2 (@),
- 1 1 (SL’— eo)J .
; =— ; for1<j<
0;v1(x) o T =00 [z = o + 0;9(z) or 1 <j<n,
. 1 1 1 2 (z—00,V9) )
Vo (z)|* = — + |Vg(x)|*,
‘ 1( >| Wr2k1 “%790‘2"72 Wn 1 |x700|n,1 ‘(ﬂ*@o‘ ‘ g( )l
1 1

(.’E - QOavvl(m)) = _wn—l |J) — 90|n—2 + ({E - 90; v.g(x))v

- 1 1 1 2
(=00, VA = o BT oy fo g ¢ P V) = o, ()’
1 1 1 1
— 0 7. 7 = — —
(.’1? 07vvl(‘r)) ’U1<.'17) (n72)w72171 ‘x700‘2n74 Wh1 |x,90|n729($)
1 1

+ (z — 00, Vg(x)) + (. — 6o, Vg(z)) g(x)

(n —2)wp—1 |z — B2

So, noting that 9,0(z) = w on 0 By, (d), we obtain

1 ~12 _ 2 Co(y_ ~
— 5 / 5|Vv| (=60, V0)" n-2(z eo,vy)ﬁ o
nn Q(n _ 2)nwn71 9 s 5 5
d Ba, (5)
- 1 1 Vg(a)
/ w2 2623, ont (z — 0o, Vg(x)) +0 5 o
9B, (5)
1 1 1 2 (z — 907vg(x))2
+ / _w%—l §52n—3 + o1 g1 (SL’ — 00, Vg(x)) — f do
&Bg, (6)

v [ gt o) - e 00, V(@)

2 252n=3 T gy 2671  wp_q 2671

dBg, (6)
n—2
DY (‘23 - Z‘o,Vg(x)) 9(37) do
_ 1 (n—2) 11
a / oy 21 (@) do =+ / o 2en1(® = 00, V() do
9Bg, () 9B, (5)
2 2
- —2
* 5|Vgél")\ - & 9075V9(3?)) - n25 (x — 6o, Vyg(z)) g(x)| do

9B, (5)
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Therefore we have

1 , Vo2 (2—00,V8) n—2(z—00,V0)_
1 _ _
n"=2(n — 2)"w?_, 550 0 2 5 2 5 o) do
& By (6)
) 1 (n—2) . 1 1
= lim o1 28n1 g(z) do + lim o W(ﬂf — 6o, Vy(z)) do
0390 (5) aBﬂo (6)
| V@) (z—00,Vgx)? n—-2,
+ lim [5 K2 ] w00, Vg(@)) g(a)| do
0B, (9)
~ (n—2)
= B 9(6o)
And
, Vo2 (z—00,V8) n—2(z—00,VD)_
i) (6 2 5 2 T
0 B, (9)
n_2 n n—2 n"2(n — 2)"w,_
=02 (- 2)F " Py = A e
Hence

((2 —(~1,0),v) @ - ((z — (~1,0), V&) + _ 5 2@) aya) do

9 B(-1,00(1/2)

This completes Step 1. (]

Step 2: We claim that

T(Br—1(ap)(7e/2))

PROOF. Since Dy7T = Ign, so for € > 0 sufficiently small one has
By (1e/4) C T (Br-1(2.)(r¢/2)) C By (3rc/4)

And hence for € > 0 sufficiently small and since the integrand is nonnegative (which
is a consequence of the computations below)

/ u?*(se) (Lxs) i < / ug*(Se) (vas) i < / ug*(se) (CE,IEE) "
|5 |z || |z sozf?

|
Ba, (re/4) T(By1i,(re/2) By, (3r./4)
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We fix a 0 < § < 1 and calculate f g ) (z’x§) dx. Recall our definition of

B, (re6) ETRCEY
ve in Theorem 4.4. With a change of variable we obtain
(4.104)
2* (s, seN 252 T | ke g T (s
/ u ™ (o) dx = (m > 2 / (o] + g% ) ve(@)? ) d
s 2 T = Se k 2 Se T
o el ‘ g + ea®l® |2s + e
Be(red) Bo(dre/ke) ¢ ‘ fze] T Tzl
We have obtained earlier in Theorem 4.4 that hH(l] T | =1, hH(l] ,:E = 400 and
e— e—
hII(l) 7 = 0 Also we have for all z € Bo(dr¢/ke)
e—0 1Te
Te e | ke ke Te ke Te Te ke
— | <t =z < | | 0 S |+ x| + 6
|z |z |z |z | |z |z | |z
So for all © € By(dr/k.)
€ kE
Loy e pl>1-0
|z |z

Then passing to limits in (4.104), using Theorem 4.4 and the pointwise control of
Theorem 4.6, we obtain by Lebesgue dominated convergence theorem

. -
. ue 7 (x,x) o 1 ¥ -2
1 dr = dr = | ———
50 e |22 /” v (K(n,0)>
R L
And therefore
2" (se) 72
€ ) € 1 2 2
/ 4 (Ix>dm:( ) +0(1) as e =0

T(Br-1(a0)(7e/2)
This ends Step 2. O

Step 3: We claim that, as e — 0,

O(pe) forn=3ora=0,
/ (a i (x — x;, Va)) u? dr ={ p?log ( ) [64wsa(zg) + o(1)] for n = 4,
T(Br-i(y.,(rc/2)) 112 [dna(xo) + o(1)] for n > 5.
where
d, = / L dx forn>5

|z|? n—2
R (1 + n(n—2)>
PrROOF. We divide the proof in three steps.

Case 3.1: we assume that n = 3. In Theorem 4.6 we have obtained that there
exists a constant C' > 0 such that for all x € Q, uzl/zue(x) < ﬁ for all € > 0.
So we obtain

T(Br-1(ae)(re/2)
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Case 3.2: we assume that n = 4. Since DyT = g, so for € > 0 sufficiently small
one has

Be (re/4) C T (Br-1(2.)(re/2)) C By, (3rc/4)

We fix 0 < § < 1 and calculate the following integral. Recall our definition of v, in
Theorem 4.4. With a change of variable we obtain

2
i (-2, V)Y o _
Tog (r-/k2) / (“ + 5 ) ue de =

By (6re)

1 k. 4 (kex,Va(ze + k)
log (r./k.) (m) / (a(xe ko) + 2 ve dv
Bo(dre/ke)

We have that liné E— = 1 and from Theorem 4.6, it follows that there exists a
€— €
constant C' > 0 such that as ¢ — 0
1
ve(z) < C

<C
I

1+(&

He

and therefore

. -2 r—xe,Va
ll_r}(l) Mgﬁ"m / (a + ()) u? dx| = 64ws a(x)

2
By, (67¢)
And hence
—2
. Lo (x —x,Va)\ o _
i gty ] (e T | =6k ate

T(Br-1(ae)(re/?)

Case 3.2: We assume that n > 5. Since Dy7 = Ign, so for € > 0 small one has
By (re/4) CT (BTfl(zf)(TE/Q)) C By, (3rc/4)

We fix a 0 < § < 1 and calculate the following integral. Recall our definition of v,
in theorem 4.4. With a change of variable we obtain

i [ (o I (5) [ (ot T B

e
B (re6) Bo(6r¢/ke)

We have that lirr(l) ﬁ— = 1 and from Theorem 4.6, it follows that there exists a
€— €

constant C > 0 such that as ¢ — 0

n—2
2

n—2

1 1 2
< _— < _—
vel@) < C 2 ‘C(HxP)
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Therefore
lim | p 2 a+ W) u? dx| = d, a(zo) forn>5
e—0 2
Bo(0re/ke)
And hence
lim |p? / (a + W) u? dx| = d, a(x) forn >5
e—0 2
T(Br-i(a,(re/2))
This ends Step 3.3. U

Combining Steps 1 to 3 in the Pohozaev identity (4.102) yields, as e — 0,

867"”_2 nn—l(n _ 2)n_1K(7’L, O)n/an_l

ehi% M?6_2 = = ifn=3o0ra=0,
S 2 T
Ze (K(4,0)7* +0(1)) — (‘;) (32w3 4+ o(1)) = p?log <k> [dya(zg) +o(1)] if n =4

02 (10 o) - (1) (U2 o)) < 2 ) o0 i 25

To get extra informations, we differentiate the Pohozaev identity (4.87) with respect
to the j*" variable (z.); and get

) _ 2% (s¢) )
/ i@ 2 4 4 30 =2) / ve U T

2 2(n — se)
T(Br-i(a.(re/2)) T(Br-i(an(re/2))

(4.105)
*(ss)
[Vuc|?  au? 1wl
4 <Y ) dudu | d
/ (1@( 3 + 5 3 (s) ol OjucOyu o

(T (Br-1(,,)(re/2)))

Step 4: We claim that

2-n 2 2 27 (se)
7 [V, au 1 wue

< £ — — O1udyuc | d
e / (1/1 ( 5 + 5 3 (s) [a] LU0, u o

T (Br-i(a,)(re/2))

(4.106) =— “— +o(1)
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PROOF. We write 7 1(z.) = ((wc)1,2.). Then as Step 1 above, using Propo-
sition 4.8.2 we have as € = 0

2—n 2 2 2" (se)

7 |Vue| au 1 g
e , e < | —dudu.| d
e / (V] ( ) + 2 2(s.) || U Op U, o

(T (Br—1(,,)(re/2)))
Vo>

= Vj

0B(-1,0)(1/2)

;v aya) do + o(1)

where . and v are as in Step 1 above. In particular
n—=2

_oy_ (n(n=2))=
(4.107) o(x) = 2 —6o)|"2

n—2

where h(z) = —%. Arguing as in Step 1, we get that

+ h(z) for z € R™ \ {60}

(4.108)
('2' o 81,17> do = w1 (n — 2)(n(n — 2)) 7" 9;h(00)

9 B(~1,0(1/2)

For j =1 we get

V|2 S n""2(n — 2)"wp_
(4.109) 1/1u — 010 8,,11) do = — ( 2n71) !
9 B(~1,00(1/2)
This completes Step 4. |
Step 5: We claim that
(4.110)
2% (s¢) 2
Ue T (Te)1 1 2
— dx = 1 1 3 0
[ e if(rmg) 0w weo

T(Br-1(ap)(re/2)

PrOOF. We proceed as in Step 2 above. We fix a 0 < § < 1 and calculate

w2t 5o

|z [ W% dz. From our definition of v, in Theorem 4.4 we obtain with
By (rc0)

a change of variable

2% (s N N
) u? (se) 1 |-’Ee s 3 (Ie)l 4 kexy ’Ue(x)Q (se)

|| . 5 do = 5 - T = dx

|LL’| € |.’17| € |‘TE|+‘TE|£E| Te 4 ke T
Bo(6re) Bo(7 /ke) © c [ze| T |zl

Then as in Step 2

| e / a2 ) gy [ 1\
1 Z_dx| = dr =
0 | won iz |22 v T KW, 0

Rn

Bo(dre)

And hence we have (4.110). This ends Step 5. O
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Proceeding as in Step 3, for every 1 < j < n we have as ¢ — 0

O(pe) for n = 3,
(4.111) / dja(z) ui(z) dx =4 O (uf log (i)) for n =4,
T(BTfl(zE)(TG/Q)) o (uz) for n > 5.

Using the Pohozaev identity (4.105) and the preceding estimates obtained after
Steps 1 to 3, noting that r. = d(z., Q) = (1 + o(1))|ze 1], we then obtain that

d(xe,00) = (14 0(1))|ze| as € = 0 when n =3 or a = 0.

When n =4, Then as ¢ — 0

Se (-%)1 —2 Mg o 2 Te

T e (K(4, 0)~“+ 0(1)) —|—E (32w3 4+ 0(1)) = O (ue log ;
Finally, when n > 5, we get as € = 0
Sﬁ(n - 2) (x€>1 —n/2 —1 He e nn_Q(n — 2)nw’ﬂ*1
T (K072 +0(1)) +7; - = +o(1)

=0 (ue)

Plugging together these estimates and the estimates after Steps 1 to 3 yields The-
orem 4.10. (]
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