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CHAPTER 1

Introduction

Nonlinear problems such as those that naturally arise from geometry and
physics like the study of geodesics, minimal surfaces, harmonic maps, conformal
metrics with prescribed curvature, Hamiltonian systems, solutions of boundary
value problems and Yang-Mills fields, can all be characterised as critical points u
of some functional F on an appropriate space X, i.e., F 0(u) = 0. So one is con-
cerned with problems of existence, location, multiplicity and qualitative properties
of critical points in such contexts and how they relate to the (weak) solutions they
represent for the corresponding Euler-Lagrange equations.
The points of maxima or minima, if it exists, are the simplest example of critical
points for F . In general the functional F maybe unbounded on X or it may not
achieve maximum or the minimum value(s). Locating critical levels for a smooth
functional F on a space X essentially reduces to capturing the changes in the topol-
ogy of the sublevel sets Fa = {x 2 X : F (x) < a} as a varies in R. Under the right
conditions on F , classical Morse theory states that a non-trivial topology between
Fa and Fb should detect a critical level c between a and b. The next simplest
example short of considering minimisation consists of taking two points u0 and u1

both lying below level a which are not connected in Fa, but become so if one can
climb above that level. This means that the the sublevels Fa and Fb have di↵erent
topologies for some b > a and this yields a critical point c between levels a and
b. This setting is often called the Mountain-Pass Principle since in practice one
insures that the two villages are disconnected below level a by showing that they
are separated by a mountain range with minimal altitude exceeding a.

The above proposition identifies a potential critical level. The problem of ex-
istence of a critical point then reduces to proving that a sequence (xm) satisfying
lim

m!1
F (xm) = c and lim

m!1
kF 0(xm)k = 0 is relatively compact in X. This is usually

where the hard analysis is needed. Any function possessing such a property is said
to satisfy the Palais-Smale condition at level c, in short (PS)c.

In this memoir we study some variational elliptic partial di↵erential equations with-
out the compactness property as described above. In problems of these kind one
encounters a blow-up phenomenon caused by scale and conformal invariance, which
makes it non-compact . However, this lack of compactness is not always the final
word and a finer analysis of the behavior of non-compact sequences may provide
us with some new conditions that could prevent such an eventuality. As a model
case, one can think of the well studied stationary Schrödinger equation

⇢
�u+ hu = |u| 4

n�2u in ⌦
u = 0 on @⌦

1



2 1. INTRODUCTION

where � := �div(r) is the Laplacian operator with negative sign convention, ⌦
is a bounded smooth domain in Rn or a closed Riemannian manifold of dimension
n � 3 and h 2 C1(⌦).

Broadly speaking, this memoir is divided into two parts.

Part 1: We analyse the question of existence for some Polyharmonic boundary
value problems with critical Sobolev growth on a compact Riemannian
manifold.

Part 2: Here we do a blow-up analysis of the nonlinear elliptic Hardy-Sobolev
equation with critical growth and vanishing boundary singularity.

We give a quick overview of these topics, providing also an outline of the content
of this memoir.

Part 1

Let M be a closed manifold of dimension n � 3 and let k be a positive integer
such that 2k < n. In recent years, there have been extensive study of the relation-
ship between the conformally covariant operators, that is, operators which satisfy
some invariance property under conformal change of metric on M , their associated
conformal invariants, and the study of the related partial di↵erential equations.
In their celebrated work Graham-Jenne-Mason-Sparling [27] provided a systematic
construction of a family of conformally covariant operators (GJMS operators for
short) based on the ambient metric of Fe↵erman-Graham [18]. More precisely, let
M be the set of Riemannian metrics on M , then for all g in M, there exists a
local di↵erential operator Pg : C1(M) ! C1(M) such that Pg = �k

g + l.o.t where

�g := �divg(r), and, given u > 0, u 2 C1(M) and defining ĝ = u
4

n�2k g, one has

(1.1) Pĝ(') = u� n+2k
n�2kPg (u') for all ' 2 C1(M).

Moreover, Pg is self-adjoint with respect to the L2�scalar product. A scalar in-
variant is associated to this operator, namely the Q-curvature, denoted as Qg.
When k = 1, Pg is the conformal Laplacian and the Q�curvature is the scalar
curvature multiplied by a constant. When k = 2, Pg is the Paneitz operator in-
troduced in [40]. The Q-curvature was introduced by Branson and Ørsted [9]
and later generalised by Branson[7,8]. In the specific case n > 2k, we have that

Qg := 2
n�2kPg(1). Then, taking ' ⌘ 1 in (1.1), we get that Pgu = n�2k

2 Qĝu
n+2k
n�2k on

M . Therefore, prescribing the Q�curvature in a conformal class amounts to solv-
ing a nonlinear elliptic partial di↵erential equation of 2kth order. Results for the
prescription of the Q�curvature problem for the Paneitz operator (namely k = 2)
are in Djadli-Hebey-Ledoux [16] and Esposito-Robert [17] for instance. Recently,
Gursky-Malchiodi [28] proved the existence of a metric with constant Q�curvature
(still for k = 2) provided certain geometric hypotheses on the manifold (M, g) holds.
These hypotheses have been simplified by Hang-Yang [31].

This leads us to investigate the existence of u 2 C1(M), u > 0, given f 2 C1(M),
such that

(1.2) Pu = fu2]
k

�1 in M,
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where 2]k := 2n
n�2k and P : C1(M) ! C1(M) is a smooth self-adjoint 2k-th order

partial di↵erential operator defined by

Pu = �k
gu+

k�1X

l=0

(�1)lrj
l

...j1
�
Ali1...il,j1...jlri1...ilu

�
(1.3)

here the indices are raised via the musical isomorphism and for all l 2 {0, . . . , k�1},
Al is a smooth symmetric T 0

2l-tensor field on M (that is: Al(X,Y ) = Al(Y,X) for
all T l

0-tensors X,Y on M). When P := Pg, then (1.2) is equivalent to saying that

Qĝ = 2
n�2kf with ĝ = u

4
n�2k g.

Equation (1.2) has a variational structure. Since P is self-adjoint in L2, we have
that for all u, v 2 C1(M).

Z

M

uP (v) dvg =

Z

M

vP (u) dvg =

Z

M

�k/2
g u�k/2

g v dvg +
k�1X

l=0

Z

M

Al(rlu,rlv) dvg

where

�l/2
g u :=

⇢
�m

g u if l = 2m is even
r�m

g u if l = 2m+ 1 is odd

and when l = 2m+1 is odd, �k/2
g u�k/2

g v =
�r�m

g u,r�m
g v

�
g
. If P is coercive and

f > 0, then, up to multiplying by a constant, any non-trivial solution u 2 C1(M)
to (1.2) is a critical point of the functional

u 7! JP (u) :=

R

M

uP (u) dvg

✓ R

M

f |u|2]k dvg

◆2/2]
k

(1.4)

The natural space to study JP is the Sobolev space H2
k(M); where for 1  l 

k, H2
l (M) is the completion of C1(M) with respect to the u 7! Pl

↵=0 kr↵uk2.
Equivalently (see Robert [43]), H2

l (M) can also be seen as the completion of the
space C1(M) with respect to the norm

kuk2H2
l

:=
lX

↵=0

Z

M

(�↵/2
g u)2 dvg

By the Sobolev embedding theorem we get a continuous but not compact embedding

of H2
k(M) into L2]

k(M). The continuity of the embedding H2
k(M) ,! L2]

k(M) yields
a pair of real numbers A,B such that for all u 2 H2

k(M)

kuk2
L2

]

k

 A

Z

M

(�k/2
g u)2 dvg +B kuk2H2

k�1
(1.5)

Following the terminology introduced by Hebey [32], we then define

A(M) := inf{A 2 R : 9 B 2 R with the property that inequality (1.5) holds}
As in the classical case k = 1 by Aubin, the value of A(M) depends only on k and
the dimension n. More precisely, we let Dk,2(Rn) be the completion of C1

c (Rn) for
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the norm u 7! k�k/2ukL2(Rn), and define K0(n, k) > 0

(1.6)
1

K0(n, k)
:= inf

u2Dk,2(Rn)\{0}

R
Rn

(�k/2u)2 dx
⇣R

Rn

|u|2]k dx
⌘ 2

2
]

k

as the best constant in the Sobolev’s continuous embedding Dk,2(Rn) ,! L2]
k(Rn).

It follows from Lions [36], Ge-Wei-Zhou [20], that the extremal functions for the
Sobolev inequality (1.6) exist and are exactly multiples of the functions

Ua,� = ↵n,k

✓
�

1 + �2|x� a|2
◆n�2k

2

a 2 Rn,� > 0

where ↵n,k’s are explicit.

For polyharmonic operators on a compact Riemannian manifold we obtain the
following best constant result:

Theorem 1.1. (Mazumdar [37], see Chapter 2) Let (M, g) be a smooth, com-
pact Riemannian manifold of dimension n and let k be a positive integer such that
2k < n. Then A(M) = K0(n, k) > 0. In particular, for any ✏ > 0, there exists
B✏ 2 R such that for all u 2 H2

k(M) one has
✓Z

M

|u|2]k dvg
◆ 2

2
]

k  (K0(n, k) + ✏)

Z

M

(�k/2
g u)2 dvg +B✏ kuk2H2

k�1

As a consequence of this result, we obtain a description of noncompact bounded
families inH2

k(M). This is the extension of the PL Lions concentration compactness
lemma for Riemannian manifolds:

Theorem 1.2. (Mazumdar [38], see Chapter 2) Let (M, g) be a smooth, com-
pact Riemannian manifold of dimension n and let k be a positve integer such that
2k < n. Suppose (um) be a bounded sequence in H2

k(M) such that µm * µ weakly
in M

(a) um * u weakly in H2
k(M)

(b) µm = |�k/2
g um|2g dvg * µ weakly in the sense of measures

(c) ⌫m = |um|2]k dvg * ⌫ weakly in the sense of measures

Then we have:

(i) There exists an at most countable index set I, a family of distinct points
{xi 2 M : i 2 I}, families of nonnegative weights {↵i : i 2 I} and
{�i : i 2 I} such that

⌫ =|u|2]k +
X

i2I
↵i�x

i

(1.7)

µ �|�k/2
g u|2g +

X

i2I
�i�x

i

(1.8)

where �x denotes the Dirac measure concentrated at x 2 M with mass
equal to 1 .
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(ii) In addition we have for all i 2 I
↵
2/2]

k

i  K0(n, k) �i(1.9)

In particular
P
i2I

↵
2/2]

k

i < 1.

(iii) Furthermore, if u ⌘ 0 and ⌫(M)
2/2

]

k � K0(n, k) µ(M), then ⌫ is concen-
trated at a single point.

Another consequence of A(M) = K0(n, k) is the existence of minimum energy
solutions to (1.2) when the functional JP goes below a quantified threshold (see
Theorem 1.3 below). In general the conformal covariance of the geometric operator
Pg yields obstruction to the existence of solutions to (1.2). In particular, it follows
from [12] that on the canonical sphere (Sn, can), there is no positive solution u 2
C1(Sn) to the equation Pcanu = (1+ ✏')u2]

k

�1 , for all ✏ 6= 0 and all first spherical
harmonic '.

We remark that any weak solution to equation (1.2) is infact a classical solution.
The proof (Mazumdar [37], see Chapter 2) is based on the ideas developed by Van
der Vorst [49]. Concerning the existence of weak solutions to equation (1.2) we first
look for minimizers of the functional JP . The result we obtain in this direction (in
the spirit of Aubin) is

Theorem 1.3. (Mazumdar [37], see Chapter 2) Let (M, g) be a compact Rie-
mannian manifold of dimension n > 2k, with k � 1. Let P be a di↵erential operator
as in (1.3) and let f 2 C0,✓(M) be a Hölder continuous positive function. Assume
that P is coercive on H2

k,0(M). Suppose that

inf
u2N

f

Z

M

uP (u) dvg <
1

(supM f)
2

2
]

k K0(n, k)

,

where

Nf := {u 2 H2
k(M) :

Z

M

f |u|2]k dvg = 1}

Then there exists a minimizer u 2 Nf . Moreover, up to multiplication by a constant
u 2 C2k(M) is a solution to

Pu = fu2]
k

�1 in M.

In addition, if the Green’s function of P on M with Dirichlet boundary condition
is positive, then upto changing sign u > 0 is a classical solution to

Pu = fu2]
k

�1 in M.

In a remarkable result first Coron [11], and then Bahri-Coron [5] showed that the
topology of the domain plays a role in proving the existence of solutions to equations
like (1.11) when k = 1. Coron [11] showed that the equation

8
<

:

�u = u
n+2
n�2 in ⌦

u > 0 in ⌦
u = 0 on @⌦
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always admits a solution if the bounded smooth domain ⌦ ⇢ Rn, n � 3, has
a su�ciently small hole. Here � = �P

i @ii is the Laplacian with minus sign
convention. The idea of the proof is to argue by contradiction and to use a minimax
method for the corresponding energy functional J , based on a set T of non-negative
functions which are homeomorphic to the (n � 1) dimensional sphere ⌃ around a
point in ⌦. The set T is contractible in the positive cone in H2

1,0(⌦). So if the
above equation does not admit a solution, then under certain conditions such a
contraction of T in H2

1,0(⌦) will induce a contraction of ⌃ in ⌦, giving the desired
contradiction.

Infact Bahri-Coron [5] showed that the e↵ect of topology is much stronger,
and extended the Coron’s result for the case when ⌦ has a non-trivial topol-
ogy(homology). We note that the solutions obtained by these topological methods
are in general not a minimiser of the corresponding energy functional JP . The
result of Coron [11] has been generalised for the polyharmonic case by Ge and al.
[20], and Weth and al. [6] for domains in Rn. The next theorem proved in [37] is
in this spirit:

Theorem 1.4. (Mazumdar [37], see Chapter 2) Let (M, g) be a smooth, com-
pact Riemannian manifold of dimension n and let k be a positive integer such that
2k < n. We let P be a coercive operator as in (1.3). Let ◆g > 0 be the injectivity ra-
dius of the manifold M . Suppose that the manifold M contains a point x0 such that
the embedded (n� 1) dimensional sphere Sx0(◆g/2) := {x 2 M/dg(x, x0) = ◆g/2} is
not contractible in M\{x0}. Then there exists ✏0 2 (0, ◆

g

2 ) such that the equation
(

Pu = |u|2]k�2 u in ⌦M

D↵u = 0 on @⌦M for |↵|  k � 1
(1.10)

has a non-trivial C2k(⌦M ) solution for ⌦M := M\Bx0(✏0). Moreover, if the Green’s
Kernel of P on ⌦M is positive, then we can choose u > 0.

In the original result of Coron [11] and its subsequent generalisations by Ge and
al. [20], and Weth and al. [6] (for k � 1) the authors work with a smooth domain
in Rn and assume that it has a small “hole”. In the context of a compact manifold,
this assumption is not enough: indeed, the entire compact manifold minus a small
hole might retract to a point. In section 7 of Chapter 2, we show that, in the case
of the canonical sphere the existence of a hole is not su�cient to get solutions to
equation (1.11), showing that the hypothesis of Theorem 1.4 is necessary.

One can also let (M, g) to be a smooth, compact Riemannian manifold of dimension
n with boundary. By this we understand thatM is a compact, oriented submanifold
of (M̃, g) which is itself a smooth, compact Riemannian manifold without boundary
and with the same metric g and dimension n. As one checks, this includes smooth
bounded domains of Rn. When the boundary @M 6= ;, we let ⌫ be its outward
oriented normal vector in M̃ . Then in addition to equation (1.2) one can also
consider the following general boundary value problem on M

(
Pu = f |u|2]k�2 u in M
@↵⌫ u = 0 on @M for |↵|  k � 1.

(1.11)

where f 2 C0,✓(M) is a Hölder continuous function.
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The Hilbert space H2
k,0(M) is similarly defined as the completion of the space

C1
c (M) with respect to the norm k·k2H2

k

as defined earlier. We say that u 2 H2
k,0(M)

is a weak solution of equation (1.11) if
Z

M

�k/2
g u,�k/2

g ' dvg +
k�1X

l=0

Z

M

Al(rlurl') dvg =

Z

M

|u|2]k�2 u' dvg

for all ' 2 H2
k,0(M). The functional JP is well defined on H2

k,0(M) \ {0} and
its critical points corresponds to weak solutions of (1.11). Any weak solution to
equation (1.11) is again a classical solution(see Chapter 2: Regularity) .
One can also consider the free functional

IP (u) :=
1

2

Z

M

uP (u) dvg � 1

2]k

Z

M

|u|2]k dvg

onH2
k,0(M). Critical points u 2 H2

k,0(M) of IP are again weak solutions to equation
(1.11).

Definition 1.0.1. Let (X, k·k) be a Banach space and F 2 C1(X). A sequence
(um) in X is said to be a Palais-Smale sequence for F if (F (um))m has a limit in
R when m ! +1, while DF (um) ! 0 strongly in X 0 as m ! +1.

In [38] we describe the lack of relative compactness of Palais-Smale sequences for

IP , which is due to the noncompact embedding H2
k,0(M) ,! L2]

k(M). We obtain
a characterization of the Palais-Smale sequences for IP as a sum of bubbles plus a
critical point of IP (which can be trivial), a result in the spirit of Struwe’s celebrated
1984 result. We consider Riemannian manifolds with or without boundary. The
main idea is that often a non-convergent Palais-Smale sequence (um) or a blown
up version of it splits up into a piece that converges weakly to a solution of the
original problem u0 and another one that converges to solutions of a closely related
limiting problem. This is a very powerful result which is often used to show the
existence of solutions to a variational problem.

In our case, because of the higher order of the polyharmonic operator, unlike
the classical case of the Laplace operator (k = 1), in general there might be bubbles
approaching the boundary of the domain, and this generates special type of bubbles
which are solutions to the rescaled equation in the half space.

For ⌦ any open domain of Rn, we let D2
k(⌦) be the completion of C1

c (⌦) for the
norm u 7! k�k/2uk2. The limiting equations of (1.11) are

(1.12) �ku = |u|2]k�2 u in Rn, u 2 D2
k(Rn)

(1.13)

(
�ku = |u|2]k�2 u in Rn

�
@↵⌫ u = 0 on @Rn

�

)
, u 2 D2

k(Rn
�)

where� := �Eucl is the Laplacian on Rn (with the minus sign convention) endowed
with the Euclidean metric Eucl. Associated to the functional IP is the limiting
functional

E(u) :=
1

2

Z

Rn

(�k/2u)2 dx� 1

2]k

Z

Rn

|u|2]k dx for all u 2 D2
k(Rn).
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The full H2
k�decomposition of the Palais-Smale sequences for the functional IP is

given by the following theorem

Theorem 1.5. (Mazumdar [38], see Chapter 3) Let (um) be a Palais-Smale
sequence for the functional IP on the space H2

k,0(M). Then there exists d 2 N
bubbles [(x(j)

m ), (r(j)m ), u(j)], j = 1, ..., d, there exists u1 2 H2
k,0(M) a solution to

(1.11) such that, up to a subsequence,

um = u1 +
dX

j=1

B
x
(j)
m

,r
(j)
m

(u(j)) + o(1) where lim
m!+1

o(1) = 0 in H2
k,0(M)

and

IP (um) = IP (u1) +
dX

j=1

E(u(j)) + o(1) as m ! +1.

for definition of bubbles see: section 2 of Chapter 3. As one checks, for any non-
trivial weak solution u 2 D2

k(Rn) of (1.12) or (1.13)

(1.14) E(u) � �] :=
k

n
K0(n, k)

�n/2k

When the Palais-Smale sequence is nonnegative, the bubbles are indeed positive
and correspond to positive solutions of (1.12). We then have:

Theorem 1.6. (Mazumdar [38], see Chapter 3) Let (um) be a Palais-Smale
sequence for the functional Ip on the space H2

k,0(M). We assume that um � 0 for

all m 2 N. Then there exists u1 2 H2
k,0(M) a solution to (1.11), there exists d 2 N

sequences : (x(1)
m ), . . . , (x(d)

m ) 2 M , (r(1)m ), . . . , (r(d)m ) 2 (0,+1) such that r(j)m ! 0

and r(j)m = o(d(x(j)
m , @M)) as m ! +1 for all j = 1, ..., d, and up to a subsequence,

um = u1 +
dX

j=1

⌘
⇣
(r̃(j)m )�1exp�1

x
(j)
m

(·)
⌘
↵n,k

 
r(j)m

(r(j)m )2 + dg(·, x(j)
m )2

!n�2k
2

+ o(1)

where limm!+1 o(1) = 0 in H2
k,0(M), and ⌘ is a smooth cut-o↵ function and r̃(j)m ’s

are such that for all j = 1, ..., d

lim
↵!+1

rj↵
r̃j↵

= 0 and r̃j↵ <
dg(xj

↵, @M)

2

Moreover,

IP (um) = I(u1) + d�] + o(1) as m ! +1
where �] is as in (1.14).

When k = 1 and M is a smooth bounded domain of Rn, Theorem 1.5 is the pio-
neering result of Struwe [46]. There have been several extensions. Without being
exhaustive, we refer to Hebey-Robert [33] for k = 2 and manifolds without bound-
ary, Saintier [45] for the p�Laplace operator, El-Hamidi-Vétois [29] for anisotropic
operators and Almaraz [2] for nonlinear boundary conditions. When the manifold is
the entire flat space Rn, the decomposition is in the monograph by Fieseler-Tintarev
[48].
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Palais-Smale sequence are produced via critical point techniques, like the Mountain-
Pass Lemma of Ambrosetti-Rabinowitz [3] or other topological methods (see for
instance the monograph Ghoussoub [21] and the references therein).

For general higher-order problems, we also refer to Bartsch-Weth-Willem [6], Pucci-
Serrin [41], Ge-Wei-Zhou [20], the general monograph Gazzola-Grunau-Sweers [19]
and the references therein.

These works are the object of my following two papers (submitted)

[37] GJMS-type Operators on a compact Riemannian manifold: Best constants
and Coron-type solutions. See Chapter 2 of this memoir.

[38] Struwe’s decomposition for a Polyharmonic Operator on a compact Rie-
mannian manifold with or without boundary. See Chapter 3 of this mem-
oir.

Part 2

Let ⌦ be a bounded smooth oriented domain of Rn, n � 3, such that 0 2 @⌦. We
define the Sobolev space H2

1,0(⌦) as the completion of the space C1
c (⌦), the space

of compactly supported smooth functions in ⌦, with respect to the norm

kuk2H2
1,0(⌦) =

Z

⌦

|ru|2 dx

We let 2⇤ := 2n
n�2 be the critical Sobolev exponent for the embeding H2

1,0(⌦) ,!
Lp(⌦). Namely, the embedding is defined and continuous for 1  p  2⇤, and it is
compact i↵ 1  p < 2⇤. Let a 2 C1(⌦) be such that the operator �+ a is coercive
in ⌦, that is, there exists a constant A0 > 0 such that for all ' 2 H2

1,0(⌦)
Z

⌦

⇣
|r'|2 + a'2

⌘
dx � A0

Z

⌦

'2 dx(1.15)

Solutions u 2 C2(⌦) to the problem

(1.16)

8
<

:

�u+ a(x)u = u2⇤�1 in ⌦
u > 0 in ⌦
u = 0 on @⌦

(often referred to as ”Brezis-Nirenberg problem”) are critical points of the func-
tional

u 7!

R

⌦

� |ru|2 + au2
�
dx

✓ R

⌦

|u|2⇤ dx

◆2/2⇤
,

and a natural way to obtain such critical points is to find minimizers to this func-
tional, that is to prove that

µa(⌦) = inf
u2H2

1,0(⌦)\{0}

R

⌦

� |ru|2 + au2
�
dx

✓ R

⌦

|u|2⇤ dx

◆2/2⇤
(1.17)

is achieved. There is a huge and extensive litterature on this problem, starting
with the pioneering article of Brezis-Nirenberg [10] in which the authors completely
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solved the question of existence of minimizers for µa(⌦) when a is a constant and
n � 4 for any domain, and n = 3 for a ball. Their analysis took inspiration from
the contributions of Aubin [4] in the resolution of the Yamabe problem. The case
when a is arbitrary and n = 3 was solved by Druet [13] using blowup analysis.

In [25] and [24], Ghoussoub-Yuan and Ghoussoub-Kang suggested to approach the
minimisation problem by adding a singularity in the equation as follows. For any
s 2 [0, 2), we define

2⇤(s) :=
2(n� s)

n� 2

so that 2⇤ = 2⇤(0). Weak solutions u 2 H2
1,0(⌦)\{0} to the problem

8
><

>:

�u+ a(x)u = u2⇤(s)�1

|x|s in ⌦

u � 0 in ⌦
u = 0 on @⌦.

Note here that 0 2 @⌦ is a boundary point. Such solutions can be achieved as
minimizers for the problem

µs,a(⌦) = inf
u2H2

1,0(⌦)\{0}

R

⌦

� |ru|2 + au2
�
dx

✓ R

⌦

|u|2⇤(s)

|x|s dx

◆2/2⇤(s)
for s 2 (0, 2)(1.18)

Consider a sequence of positive real numbers (s✏)✏>0 such that lim
✏!0

s✏ = 0. We let

(u✏)✏>0 2 C2
�
⌦\{0}� \ C1

�
⌦
�
such that

8
><

>:

�u✏ + au✏ =
u2⇤(s

✏

)�1
✏

|x|s✏ in ⌦,

u✏ > 0 in ⌦,
u✏ = 0 on @⌦.

(1.19)

Moreover, we assume that the (u✏)’s are of minimal energy type in the sense that
R

⌦

� |ru✏|2 + au2
✏

�
dx

✓ R

⌦

|u
✏

|2⇤(s
✏

)

|x|s dx

◆2/2⇤(s
✏

)
= µs

✏

,a(⌦)  1

K(n, 0)
+ o(1)(1.20)

as ✏ ! 0, where K(n, 0) > 0 is the best constant in the Sobolev embedding which
can be characterised as

1

K(n, 0)
= inf

u2D1,2(Rn)\{0}

R

Rn

|ru|2 dx

✓ R

Rn

|u|2⇤ dx

◆2/2⇤
(1.21)

Indeed, it follows from Ghoussoub-Robert [22,23] that such a family (u✏)✏ exists if
the the mean curvature of @⌦ at 0 is negative.

The lack of compactness of the critical Sobolev embeddings potentially generates a
noncompactness of families of solutions to equations like (1.16). When a family is
not relatively compact, we say that it is a blow up sequence. In the past years, there
has been a considerable abundance of descriptions of blowing-up sequence, starting
with the description in the sense of measures by Lions [36] and the description of
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Palais-Smale sequence by Struwe [46] that we have discussed in the first part of
this memoir. Other classical references for the blow-up analysis of nonlinear critical
elliptic pdes are Rey [42], Adimurthi- Pacella-Yadava [1], Druet-Robert-Wei [15],
Han [30], Hebey-Vaugon [34] and Khuri-Marques-Schoen [35]. In particular, for
sequences of solutions, the optimal pointwise control of blow up is in Druet-Hebey-
Robert [14]. The analysis of the 3D problem by Druet [13] and the monograph
[14] by Druet-Hebey-Robert were important sources of inspiration.

Here, we are interested in studying the asymptotic behavior of the sequence (u✏)✏>0

as ✏ ! 0. As proved in Proposition 3.2 of [39], if the weak limit u0 of (u✏)✏ in
H2

1,0(⌦) is nontrivial, then the convergence is indeed strong and u0 is a minimizer
of µa(⌦). In the spirit of the C0�theory of Druet-Hebey-Robert [14], our first
result is the following:

Theorem 1.7. (Mazumdar [39], see Chapter 4) Let ⌦ be a bounded smooth
oriented domain of Rn, n � 3 , such that 0 2 @⌦, and let a 2 C1(⌦) be such that
the operator � + a is coercive in ⌦. Let (s✏)✏>0 2 (0, 2) be a sequence such that
lim
✏!0

s✏ = 0. Suppose that the sequence (u✏)✏>0 2 H2
1,0(⌦), where for each ✏ > 0, u✏

satisfies (1.19) and (1.20), is a blowup sequence, i.e

u✏ * 0 weakly in H2
1,0(⌦) as ✏! 0

We rescale and define

v✏(x) =
u✏(x✏ + k✏x)

u✏(x✏)
for x 2 ⌦� x✏

k✏

where

k✏ = |x✏|
s

✏

2 µ
2�s

✏

2
✏

and

µ
�n�2

2
✏ = u✏(x✏) = max

x2⌦
u✏(x).

Then there exists v 2 C1(Rn) such that v 6= 0 and for any ⌘ 2 C1
c (Rn)

⌘v✏ * ⌘v weakly in H2
1 (Rn) as ✏! 0

and

v✏ �! v in C1
loc(Rn) as ✏! 0

Further v(0) = 1 and it satisfies the equation
⇢

�v = v2
⇤�1 in Rn

v � 0 in Rn

Next we obtain strong pointwise control

Theorem 1.8. (Mazumdar [39], see Chapter 4) Let ⌦ be a bounded smooth
oriented domain of Rn, n � 3 , such that 0 2 @⌦, and let a 2 C1(⌦) be such that
the operator � + a is coercive in ⌦. Let (s✏)✏>0 2 (0, 2) be a sequence such that
lim
✏!0

s✏ = 0. Suppose that the sequence (u✏)✏>0 2 H2
1,0(⌦), where for each ✏ > 0, u✏

satisfies (1.19) and (1.20), is a blowup sequence, i.e

u✏ * 0 weakly in H2
1,0(⌦) as ✏! 0
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Then, there exists C > 0 such that for all ✏ > 0

u✏(x)  C

✓
µ✏

µ2
✏ + |x� x✏|2

◆n�2
2

for all x 2 ⌦

where

µ
�n�2

2
✏ = u✏(x✏) = max

x2⌦
u✏(x).

Theorem 1.8 asserts that the pointwise control is the same as the control of the
classical problem with s✏ = 0: however, to prove this result, we need to perform a
very delicate analysis of the blowup with the perturbation s✏ > 0.

With this optimal pointwise control, we are able to obtain more informations on
the localization of the blowup point x0 := lim✏!0 x✏ and the blowup parameter
(µ✏)✏. We let Ga : ⌦ ⇥ ⌦ \ {(x, x) : x 2 ⌦} �! R is the Green’s function of the
coercive operator � + a in ⌦ with Dirichlet boundary conditions. For any x 2 ⌦
we write Ga

x as:

Ga
x(y) =

1

(n� 2)!n�1|x� y|n�2
+ gax(y)

where !n�1 is the area of the (n� 1)- sphere. In dimension n = 3 or when a ⌘ 0,
one has that gax 2 C2(⌦ \ {x}) \ C0,✓(⌦) for some 0 < ✓ < 1, and ga is called
the regular part of the Green’s function Ga. In particular, when n = 3 or a ⌘ 0,
mx(⌦, a) := gax(x) is defined for all x 2 ⌦ and is called the mass of the operator
�+ a.

Theorem 1.9. (Mazumdar [39], see Chapter 4) Let ⌦ be a bounded smooth
oriented domain of Rn, n � 3 , such that 0 2 @⌦, and let a 2 C1(⌦) be such that
the operator � + a is coercive in ⌦. Let (s✏)✏>0 2 (0, 2) be a sequence such that
lim
✏!0

s✏ = 0. Suppose that the sequence (u✏)✏>0 2 H2
1,0(⌦), where for each ✏ > 0, u✏

satisfies (1.19) and (1.20), is a blowup sequence, i.e

u✏ * 0 weakly in H2
1,0(⌦) as ✏! 0

We let (µ✏)✏ 2 (0,+1) and (x✏)✏ 2 ⌦ be such that

µ
�n�2

2
✏ = u✏(x✏) = max

x2⌦
u✏(x).

We define x0 := lim✏!0 x✏.

Suppose

x0 2 ⌦ is an interior point.

Then

lim
✏!0

s✏
µ2
✏

= 2⇤K(n, 0)
2⇤

2⇤�2 dn a(x0) for n � 5

lim
✏!0

s✏
µ2
✏ log (1/µ✏)

= 256!3K(4, 0)2 a(x0) for n = 4

lim
✏!0

s✏
µn�2
✏

= �nb2nK(n, 0)n/2gax0
(x0) for n = 3 or a ⌘ 0.
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where gax0
(x0) the mass at the point x0 2 ⌦ for the operator �+ a,

dn =

Z

Rn

1
⇣
1 + |x|2

n(n�2)

⌘n�2 dx for n � 5 ; bn =

Z

Rn

1
⇣
1 + |x|2

n(n�2)

⌘n+2
2

dx

and !3 is the area of the 3- sphere.

Suppose if
lim
✏!0

x✏ = x0 2 @⌦.

When n = 3 or a ⌘ 0, then as ✏! 0

lim
✏!0

s✏d(x✏, @⌦)n�2

µn�2
✏

=
nn�1(n� 2)n�1K(n, 0)n/2!n�1

2n�2
.

Moreover, d(x✏, @⌦) = (1 + o(1))|x✏| as ✏! 0. In particular x0 = 0.

Indeed, we also tackle the general case n � 4 or a 6⌘ 0. The detailed results are in
Theorems 4.3 and 4.10 of Chapter 4.

The main di�culty in our analysis is due to the natural singularity at 0 2 @⌦.
Indeed, there is a balance between two facts. First, since s✏ > 0, this singularity
exists and has an influence on the analysis, and in particular on the Pohozaev
identity (for details see the statement of Theorem 1.9 above). But, second, since
s✏ ! 0, the singularity should cancel, at least asymptotically. In this perspective,
our results are twofolds.

The influence and the role of s✏ > 0 is much more striking. Compared to the
case s✏ = 0, there is an additional term in the Pohozaev identity involving s✏.
Heuristically, this is due to the fact that the limiting equation �u = |x|�su2⇤(s)�1

is not invariant under the action of the translations when s > 0.

This part is the subject of my work:

[39] Blow-up Analysis For a Sequence of Solutions of The Critical Hardy-
Sobolev Equations. See Chapter 4 of this memoir.

Regarding notation, we tried to make it as much unified as possible. Nevertheless,
the main specific notation will be introduced chapter by chapter.
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Part 1

Polyharmonic operators on
Riemannian manifolds





CHAPTER 2

GJMS-type Operators on a compact Riemannian
manifold: Best constants and Coron-type solutions

Abstract. In this chapter we investigate the existence of solutions to a non-
linear elliptic problem involving critical Sobolev exponent for a polyharmomic
operator on a Riemannian manifold M . We first show that the best constant
of the Sobolev embedding on a manifold can be chosen as close as one wants
to the Euclidean one, and as a consequence derive the existence of minimizers
when the energy functional goes below a quantified threshold. Next, higher en-
ergy solutions are obtained by Coron’s topological method, provided that the
minimizing solution does not exist. To perform this topological argument, we
overcome the di�culty of dealing with polyharmonic operators on a Riemann-
ian manifold and adapting Lions’s concentration-compactness lemma. Unlike
Coron’s original argument for a bounded domain in Rn, we need to do more
than chopping out a small ball from the manifold M . Indeed, our topological
assumption that a small sphere on M centred at a point p 2 M does not re-
tract to a point in M\{p} is necessary, as shown for the case of the canonical
sphere where chopping out a small ball is not enough.

2.1. Introduction

Let M be a compact manifold of dimension n � 3 without boundary. Let k be
a positive integer such that 2k < n. Taking inspiration from the construction of
the ambient metric of Fe↵erman-Graham [15] (see [16] for an extended analysis of
the ambient metric), Graham-Jenne-Mason-Sparling [19] have defined a family of
conformally invariant operators defined for any Riemannian metric. More precisely,
for any Riemannian metric g on M , there exists a local di↵erential operator Pg :
C1(M) ! C1(M) such that Pg = �k

g + lot where �g := �divg(r), and, given

u 2 C1(M) and defining ĝ = u
4

n�2k g, we have that

(2.1) Pĝ(') = u� n+2k
n�2kPg (u') for all ' 2 C1(M).

Moreover, Pg is self-adjoint with respect to the L2�scalar product. A scalar in-
variant is associated to this operator, namely the Q�curvature, denoted as Qg 2
C1(M). When k = 1, Pg is the conformal Laplacian and the Q�curvature is the
scalar curvature multiplied by a constant. When k = 2, Pg is the Paneitz operator
introduced in [29]. The Q�curvature was introduced by Branson and Ørsted [10].
The definition of Qg was then generalized by Branson [8,9]. In the specific case
n > 2k, we have that Qg := 2

n�2kPg(1). Then, taking ' ⌘ 1 in (2.1), we get that

Pgu = n�2k
2 Qĝu

n+2k
n�2k on M . Therefore, prescribing the Q�curvature in a conformal

class amounts to solving a nonlinear elliptic partial di↵erential equation(PDE )of
2kth order. Results for the prescription of the Q�curvature problem for the Paneitz

21
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operator (namely k = 2) are in Djadli-Hebey-Ledoux [13], Robert [31], Esposito-
Robert [14]. Recently, Gursky-Malchiodi [20] proved the existence of a metric with
constant Q�curvature (still for k = 2) provided certain geometric hypotheses on
the manifold (M, g) holds. These hypotheses have been simplified by Hang-Yang
[21] (see the lecture notes [22])

In the present chapter, we are interested in a generalization of the prescription of
the Q�curvature problem. Namely, given f 2 C1(M), we investigate the existence
of u 2 C1(M), u > 0, such that

(2.2) Pu = fu2]
k

�1 in M,

where 2]k := 2n
n�2k and P : C1(M) ! C1(M) is a smooth self-adjoint 2kth order

partial di↵erential operator defined by

Pu = �k
gu+

k�1X

l=0

(�1)lrj
l

...j1
�
Al(g)i1...il,j1...jlri1...ilu

�
(2.3)

where the indices are raised via the musical isomorphism and for all l 2 {0, . . . , k�
1}, Al(g) is a smooth symmetric T 0

2l-tensor field on M (that is: Al(g)(X,Y ) =
Al(g)(Y,X) for all T l

0-tensors X,Y on M). When P := Pg, then (2.2) is equivalent

to say that Qĝ = 2
n�2kf with ĝ = u

4
n�2k g.

The conformal invariance (2.1) of the geometric operator Pg yields obstruction
to the existence of solutions to (2.2). The historical reference here is Kazdan-
Warner [25]; for the general GJMS operators, we refer to Delanoë-Robert [12].
In particular, it follows from [12] that on the canonical sphere (Sn, can), there is

no positive solution u 2 C1(Sn) to Pcanu = (1 + ✏')u2]
k

�1 for all ✏ 6= 0 and all
first spherical harmonic '. For the conformal Laplacian (that is k = 1), Aubin
[3] proved that the existence of solutions is guaranteed if a functional goes below
a specific threshold. We generalize this result for any k � 1 in Theorem 2.3. In
the case of a smooth bounded domain, Coron [11] introduced a variational method
based on topological arguments, provided the minimizing solution does not exist.
Our main theorem is in this spirit:

Theorem 2.1. Let (M, g) be a smooth, compact Riemannian manifold of di-
mension n and let k be a positive integer such that 2k < n. We let P be a coercive
operator as in (2.3). Let ◆g > 0 be the injectivity radius of the manifold M . Sup-
pose that the manifold M contains a point x0 such that the embedded (n � 1)�
dimensional sphere Sx0(◆g/2) := {x 2 M/dg(x, x0) = ◆g/2} is not contractible in
M\{x0}. Then there exists ✏0 2 (0, ◆

g

2 ) such that the equation
(

Pu = |u|2]k�2 u in ⌦M

D↵u = 0 on @⌦M for |↵|  k � 1
(2.4)

has a non-trivial C2k(⌦M ) solution for ⌦M := M\Bx0(✏0). Moreover, if the Green’s
Kernel of P on ⌦M is positive, then we can choose u > 0.

In the original result of Coron [11] (see also Weth and al. [6] for the case
k = 2), the authors work with a smooth domain of Rn and assume that it has a
small “hole”. In the context of a compact manifold, this assumption is not enough:
indeed, the entire compact manifold minus a small hole might retract on a point.
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We discuss the example of the canonical sphere in Section 2.7, where the existence
of a hole is not su�cient to get solutions to (2.2).
Concerning higher-order problems, we refer to Bartsch-Weth-Willem [6], Pucci-
Serrin [30], Ge-Wei-Zhou [18], the general monograph Gazzola-Grunau-Sweers [17]
and the references therein.

Among other tools, the proof of Theorem 2.1 uses a Lions-type Concentration
Compactness Lemma adapted to the context of a Riemannian manifold: this will
be the object of Theorem 2.4.

Equation (2.2) has a variational structure. Since P is self-adjoint in L2, we have
that for all u, v 2 C1(M).

Z

M

uP (v) dvg =

Z

M

vP (u) dvg =

Z

M

�k/2
g u�k/2

g v dvg +
k�1X

l=0

Z

M

Al(g)(rlu,rlv) dvg

(2.5)

where

�l/2
g u :=

⇢
�m

g u if l = 2m is even
r�m

g u if l = 2m+ 1 is odd

and, when l = 2m + 1 is odd, �k/2
g u�k/2

g v =
�r�m

g u,r�m
g v

�
g
. If P is coercive

and f > 0, then, up to multiplying by a constant, any solution u 2 C1(M) to (2.2)
is a critical point of the functional

u 7! JP (u) :=

R

M

uP (u) dvg

✓ R

M

f |u|2]k dvg

◆2/2]
k

(2.6)

It follows from (2.5) that JP makes sense in the Sobolev spaces H2
k(M), where

for 1  l  k, H2
l (M) which is the completion of C1(M) with respect to the

u 7! Pl
↵=0 kr↵uk2. Equivalently (see Robert [32]), H2

l (M) is also the completion
of the space C1(M) with respect to the norm

(2.7) kuk2H2
l

:=
lX

↵=0

Z

M

(�↵/2
g u)2 dvg.

By the Sobolev embedding theorem we get a continuous but not compact embedding

of H2
k(M) into L2]

k(M). The continuity of the embedding H2
k(M) ,! L2]

k(M) yields
a pair of real numbers A,B such that for all u 2 H2

k(M)

kuk2
L2

]

k

 A

Z

M

(�k/2
g u)2 dvg +B kuk2H2

k�1
(2.8)

See for example Aubin [4] or Hebey [23]. Following the terminology introduced by
Hebey, we then define

A(M) := inf{A 2 R : 9 B 2 R with the property that inequality (2.8) holds}
(2.9)
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As for the classical case k = 1 (see Aubin [4]), the value of A(M) depends only
on k and the dimension k. More precisely, we let Dk,2(Rn) be the completion of
C1

c (Rn) for the norm u 7! k�k/2uk2, and we define K0(n, k) > 0

(2.10)
1

K0(n, k)
:= inf

u2Dk,2(Rn)\{0}

R
Rn

(�k/2u)2 dx
⇣R

Rn

|u|2]k dx
⌘ 2

2
]

k

as the best constant in the Sobolev’s continuous embedding Dk,2(Rn) ,! L2]
k(Rn).

Our second result is the following:

Theorem 2.2. Let (M, g) be a smooth, compact Riemannian manifold of di-
mension n and let k be a positive integer such that 2k < n. Then A(M) =
K0(n, k) > 0. In particular, for any ✏ > 0, there exists B✏ 2 R such that for
all u 2 H2

k(M) one has
✓Z

M

|u|2]k dvg
◆ 2

2
]

k  (K0(n, k) + ✏)

Z

M

(�k/2
g u)2 dvg +B✏ kuk2H2

k�1
(2.11)

As a consequence of this result, we will be able to prove the existence of solutions
to (2.2) when the functional JP goes below a quantified threshold, see Theorem 2.3.

This chapter is organized as follows. In Section 2.2, we study the best-constant
problem and prove Theorem 2.2. In Section 2.3, we prove Theorem 2.3 by classical
minimizing method. In Section 2.4, we prove a Concentration-Compactness Lemma
in the spirit of Lions. Section 2.5 is devoted to test-functions estimates and the
proof of the existence of solutions to (2.4) via a Coron-type topological method.
Section 2.6 deals with positive solutions, and Section 2.7 with the necessity of the
topological assumption of Theorem 2.1. The appendices concern regularity and a
general comparison between geometric norms.

Acknowledgements. I would like to express my deep gratitude to Professor
Frédéric Robert and Professor Dong Ye, my thesis supervisors, for their patient
guidance, enthusiastic encouragement and useful critiques of this work.

2.2. The Best Constant

It follows from Lions [26] and Swanson [34] that the extremal functions for the
Sobolev inequality (2.10) exist and are exactly multiples of the functions

Ua,� = ↵n,k

✓
�

1 + �2|x� a|2
◆n�2k

2

a 2 Rn,� > 0(2.12)

where the choice of ↵n,k’s are such that for all �, kUa,�k2]
k

= 1 and kUa,�k2Dk,2 =

1
K0(n,k)

. They satisfies the equation �ku = 1
K0(n,k)

|u|2]k�2 u in Rn

Next we consider the case of a compact Riemmanian manifold. The first result we
have in this direction is the following.

Lemma 2.2.1. Let (M, g) be a smooth, compact Riemannian manifold of di-
mension n and let k be a positve integer such that 2k < n. Any constant A in
inequality (2.8) has to be greater than or equal to K0(n, k), whatever the constant
B be.
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Proof of Lemma 2.2.1: We fix ✏ > 0 small. It follows from Lemma (2.9.1) that there
exists, �0 2 (0, ◆g) depending only on (M, g), ✏, where ◆g is the injectivity radius of
M , such that for any point p 2 M , any 0 < � < �0, l  k and u 2 C1

c (B0(�))
Z

M

(�l/2
g (u � exp�1

p ))2g dvg  (1 + ✏)

Z

Rn

(�l/2u)2 dx(2.13)

and

(1� ✏)

0

@
Z

Rn

|u|2]k dx

1

A
2/2]

k


0

@
Z

M

|u � exp�1
p |2]k dvg

1

A
2/2]

k

(2.14)

Then plugging the above inequalities into (2.8) we obtain that any u 2 C1
c (B0(�))

satisfies
0

@
Z

Rn

|u|2]k dx

1

A
2/2]

k

 1 + ✏

1� ✏
A

Z

Rn

(�k/2u)2 dx+ C✏

k�1X

l=0

Z

Rn

|rlu|2 dx(2.15)

Let v 2 C1
c (Rn) with supp(v) ⇢ B0(R0). For � > 1 let v� = v(�x). Then for �

large, supp(v�) ⇢ B0(�). Taking u ⌘ v� in (2.15), a change of variable yields

1

�n�2k

0

@
Z

Rn

|v|2]k dx

1

A
2/2]

k

 1 + ✏

1� ✏
· A

�n�2k

Z

Rn

(�k/2v)2 dx+ C✏

k�1X

l=0

1

�n�2l

Z

Rn

|rlv|2 dx

(2.16)

Multiplying by �n�2k and letting � ! +1, we get that for all v 2 Dk,2(Rn), we
have

0

@
Z

Rn

|v|2]k dx

1

A
2/2]

k

 1 + ✏

1� ✏
A

Z

Rn

(�k/2v)2 dx(2.17)

Therefore 1+✏
1�✏A � K0(n, k) for all ✏ > 0, and letting ✏ ! 0 yields A � K0(n, k).

This ends the proof of Lemma 2.2.1. 2

We now prove (2.11) to get Theorem 2.2.

Step 1: A local inequality. From a result of Anderson (Main lemma 2.2 of [2])
it follows that for any point p 2 M there exists a harmonic coordinate chart '
around p. Then from Lemma 2.9.1, for any 0 < ✏ < 1, there exists ⌧ > 0 small
enough such that for any point p 2 M and for any u 2 C1

c (Bp(⌧)), one has
Z

Rn

(�k/2(u � '�1))2 dx 
✓
1 +

✏

3K0(n, k)

◆Z

M

(�k/2
g u)2 dvg(2.18)

and
0

@
Z

M

|u|2]k dvg

1

A
2/2]

k


✓
1 +

✏

3K0(n, k)

◆0

@
Z

Rn

|u � '�1|2]k dx

1

A
2/2]

k

.(2.19)
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The expression for the Laplacian�g in the harmonic coordinates is�gu = �gij@iju.
Then (2.10) implies that for any u 2 C1

c (Bp(⌧))

0

@
Z

M

|u|2]k dvg

1

A
2/2]

k

 (K0(n, k) + ✏)

Z

M

(�k/2
g u)2 dvg(2.20)

Step 2: Finite covering and proof of the global inequality. Since M is
compact, it can be covered by a finite number of balls Bp

i

(⌧/2), i = 1, . . . , N . Let
↵i 2 C1

c (Bp
i

(⌧)) be such that 0  ↵i  1 and ↵i = 1 in Bp
i

(⌧/2). We set

⌘i =
↵2
i

NP
j=1

↵2
j

(2.21)

Then (⌘i)i=1,...,N is a partition of unity subordinate to the cover (Bp
i

(⌧))i=1,...,N

such that
p
⌘i’s are smooth and

NP
i=1

⌘i = 1. In the sequel, C denote any positive

constant depending on k, n, the metric g on M and the functions (⌘i)i=1,...,N . Now
for any u 2 C1(M), we have

kuk2
2]
k

= ku2k2]
k

/2 =

�����

NX

i=1

⌘iu
2

�����
2]
k

/2


NX

i=1

��⌘iu2
��
2]
k

/2
=

NX

i=1

kp⌘iuk22]
k

(2.22)

So for any u 2 C1(M), using inequality (2.20) we obtain that

0

@
Z

M

|u|2]k dvg

1

A
2/2]

k

 (K0(n, k) + ✏)
NX

i=1

Z

M

(�k/2
g (

p
⌘iu))

2
g dvg(2.23)

Next we claim that there exists C > 0 such that

NX

i=1

Z

M

(�k/2
g (

p
⌘iu))

2 dvg 
Z

M

(�k/2
g u)2 dvg + C kuk2H2

k�1
(2.24)

Assuming that (2.24) holds we have from (2.23)

0

@
Z

M

|u|2]k dvg

1

A
2/2]

k

 (K0(n, k) + ✏)

Z

M

(�k/2
g u)2g dvg + (K0(n, k) + ✏)C kuk2H2

k�1

(2.25)

this proves (2.11), and therefore, with Lemma 2.2.1, this proves Theorem 2.8. We

are now left with proving (2.24).

Step 3: Proof of (2.24): For any positive integer m, one can write that

�m
g (

p
⌘iu) =

p
⌘i�

m
g u+ P(2m�1,1)

g (u,
p
⌘i) + L2m�2p

⌘
i

,g (u)(2.26)
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where

P(2m�1,1)
g (u,

p
⌘i) =

X

|l|=2m�1,|�|=1

(al,�@�
p
⌘i)rlu, and L2m�2p

⌘
i

,g (u) =
2m�2X

|l|=0

al(
p
⌘i) rlu

(2.27)

the coe�cients al,� and al(
p
⌘i) are smooth functions on M . The al,� ’s depends

only on the metric g and on the manifold M and al(
p
⌘i)’s depends both on the

metric g, the function
p
⌘i and its derivatives upto order 2m. We shall use the same

notations P(2m�1,1)
g (u,

p
⌘i), L2m�2p

⌘
i

,g (u) for any expression of the above form.

Step 3.1: k is even. We then write k = 2m, m � 1, and then

NX

i=1

Z

M

�
�m

g (
p
⌘iu)

�2
dvg =

NX

i=1

Z

M

⌘i
�
�m

g u
�2

dvg

+
NX

i=1

Z

M

⇣
P(2m�1,1)
g (u,

p
⌘i)

⌘2
dvg +

NX

i=1

Z

M

⇣
L2m�2p

⌘
i

,g (u)
⌘2

dvg

+2
NX

i=1

Z

M

p
⌘i�

m
g u P(2m�1,1)

g (u,
p
⌘i) dvg + 2

NX

i=1

Z

M

p
⌘i�

m
g u L2m�2p

⌘
i

,g (u) dvg

+2
NX

i=1

Z

M

P(2m�1,1)
g (u,

p
⌘i) L2m�2p

⌘
i

,g (u) dvg(2.28)

We note that

NX

i=1

Z

M

⇣
P(2m�1,1)
g (u,

p
⌘i)

⌘2
dvg  C kuk2H2

2m�1
. and

NX

i=1

Z

M

⇣
L2m�2p

⌘
i

,g (u)
⌘2

dvg  C kuk2H2
2m�2

.

(2.29)

On the other hand

NX

i=1

Z

M

p
⌘i�

m
g u P(2m�1,1)

g (u,
p
⌘i) dvg =

NX

i=1

X

|l|=2m�1

X

|�|=1

Z

M

(
p
⌘i�

m
g u)((al,�@�

p
⌘i)rlu) dvg

=
1

2

NX

i=1

X

|l|=2m�1

X

|�|=1

Z

M

(�m
g u)((al,�@�⌘i)rlu) dvg

=
1

2

X

|l|=2m�1

X

|�|=1

Z

M

(�m
g u)((al,� @�(

NX

i=1

⌘i))rlu) dvg = 0

(2.30)

while using the integration by parts formula we obtain

NX

i=1

Z

M

p
⌘i�

m
g u L2m�2p

⌘
i

,g (u) dvg  C kuk2H2
2m�1

(2.31)
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and by Hölder inequality

NX

i=1

Z

M

P(2m�1,1)
g (u,

p
⌘i) L2m�2p

⌘
i

,g (u) dvg  C kuk2H2
2m�1

(2.32)

Hence if k is even, then

NX

i=1

Z

M

�
�m

g (
p
⌘iu)

�2
dvg 

Z

M

�
�m

g u
�2

dvg + C kuk2H2
2m�1

(2.33)

So we have the claim for k even.

Step 3.2: k is odd. We then write k = 2m+ 1 with m � 0. We have

r �
�m

g (
p
⌘iu)

�
=

p
⌘i r

�
�m

g u
�
+ (�m

g u) rp
⌘i +r

⇣
P(2m�1,1)
g (u,

p
⌘i)

⌘
+r

⇣
L2m�2p

⌘
i

,g (u)
⌘(2.34)

and so

NX

i=1

Z

M

��r �
�m

g (
p
⌘iu)

���2 dvg =
NX

i=1

Z

M

⌘i
��r �

�m
g u

���2 dvg +
NX

i=1

Z

M

(�m
g u)2 |rp

⌘i|2 dvg

(2.35)

+
NX

i=1

Z

M

���r
⇣
P(2m�1,1)
g (u,

p
⌘i)

⌘���
2
dvg +

NX

i=1

Z

M

���r
⇣
L2m�2p

⌘
i

,g (u)
⌘���

2
dvg

+ 2
NX

i=1

Z

M

(
p
⌘i r

�
�m

g u
�
, (�m

g u) rp
⌘i ) dvg + 2

NX

i=1

Z

M

(
p
⌘i r

�
�m

g u
�
,r

⇣
P(2m�1,1)
g (u,

p
⌘i)

⌘
) dvg

+ 2
NX

i=1

Z

M

(
p
⌘i r

�
�m

g u
�
,r

⇣
L2m�2p

⌘
i

,g (u)
⌘
) dvg + 2

NX

i=1

Z

M

((�m
g u) rp

⌘i,r
⇣
P(2m�1,1)
g (u,

p
⌘i)

⌘
) dvg

+ 2
NX

i=1

Z

M

((�m
g u) rp

⌘i,r
⇣
L2m�2p

⌘
i

,g (u)
⌘
) dvg + 2

NX

i=1

Z

M

(r
⇣
P(2m�1,1)
g (u,

p
⌘i)

⌘
,r

⇣
L2m�2p

⌘
i

,g (u)
⌘
) dvg

(2.36)

We have that

NX

i=1

Z

M

���r
⇣
P(2m�1,1)
g (u,

p
⌘i)

⌘���
2
dvg  C kuk2H2

2m
and

NX

i=1

Z

M

���r
⇣
L2m�2p

⌘
i

,g (u)
⌘���

2
dvg  C kuk2H2

2m�1

(2.37)

while
NX

i=1

Z

M

(
p
⌘i r

�
�m

g u
�
, (�m

g u) rp
⌘i) dvg =

NX

i=1

Z

M

(r �
�m

g u
�
, (�m

g u) (
p
⌘i rp

⌘i)) dvg

=
1

2

NX

i=1

Z

M

(r �
�m

g u
�
, (�m

g u) r⌘i) dvg =
1

2

Z

M

(r �
�m

g u
�
, (�m

g u) r(
NX

i=1

⌘i)) dvg = 0

(2.38)
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And we obtain

������

NX

i=1

Z

M

(
p
⌘i r

�
�m

g u
�
,r

⇣
P(2m�1,1)
g (u,

p
⌘i)

⌘
) dvg

������

=

������

NX

i=1

X

|l|=2m�1

X

|�|=1

Z

M

(
p
⌘i r

�
�m

g u
�
,r �

(al,�@�
p
⌘i)rlu

�
) dvg

������


������

NX

i=1

X

|l|=2m

X

|�|=1

Z

M

(
p
⌘i r

�
�m

g u
�
, (al,�@�

p
⌘i)rlu) dvg

������

+

������

NX

i=1

X

|l|=2m�1

X

|�|=1

Z

M

(r �
�m

g u
�
, (
p
⌘i r(al,�@�

p
⌘i))rlu) dvg

������


������

NX

i=1

X

|l|=2m

X

|�|=1

Z

M

(
p
⌘i r

�
�m

g u
�
, (al,�@�

p
⌘i)rlu) dvg

������

+
NX

i=1

�������

X

|l|=2m�1

X

|�|=1

Z

B
p

i

(⌧)

(r �
�m

g u
�
, (
p
⌘i r(al,�@�

p
⌘i))rlu) dvg

�������
(2.39)

Then we apply the integration by parts formula on each of the domains '�1(Bp1(⌧)) ⇢
Rn to obtain

������

NX

i=1

X

|l|=2m

X

|�|=1

Z

M

(
p
⌘i r

�
�m

g u
�
, (al,�@�

p
⌘i)rlu) dvg

������

+
NX

i=1

�������

X

|l|=2m�1

X

|�|=1

Z

B
p

i

(⌧)

(r �
�m

g u
�
, (
p
⌘i r(al,�@�

p
⌘i))rlu) dvg

�������


������

NX

i=1

X

|l|=2m

X

|�|=1

Z

M

(
p
⌘i r

�
�m

g u
�
, (al,�@�

p
⌘i)rlu) dvg

������
+ C kuk2H2

2m

1

2

������

NX

i=1

X

|l|=2m

X

|�|=1

Z

M

(r �
�m

g u
�
, (al,�@�⌘i)rlu) dvg

������
+ C kuk2H2

2m

1

2

������

X

|l|=2m

X

|�|=1

Z

M

(r �
�m

g u
�
, (al,�@�(

NX

i=1

⌘i))rlu) dvg

������
+ C kuk2H2

2m

C kuk2H2
2m

since
NX

i=1

⌘i = 1(2.40)
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Similarly after integration by parts one obtains
������

NX

i=1

Z

M

(
p
⌘i r

�
�m

g u
�
,r

⇣
L2m�2p

⌘
i

,g (u)
⌘
) dvg

������
 C kuk2H2

2m
(2.41)

������

NX

i=1

Z

M

((�m
g u) rp

⌘i,r
⇣
P(2m�1,1)
g (u,

p
⌘i)

⌘
) dvg

������
 C kuk2H2

2m
(2.42)

and
NX

i=1

Z

M

((�m
g u) rp

⌘i,r
⇣
L2m�2p

⌘
i

,g (u)
⌘
) dvg

+
NX

i=1

Z

M

(r
⇣
P(2m�1,1)
g (u,

p
⌘i)

⌘
,r

⇣
L2m�2p

⌘
i

,g (u)
⌘
) dvg  C kuk2H2

2m
(2.43)

Hence for k odd, we also obtain that

NX

i=1

Z

M

�r �
�m

g (
p
⌘iu)

��2
dvg 

Z

M

�r �
�m

g u
��2

g
dvg + C kuk2H2

2m
(2.44)

Hence we have the claim and this completes the proof.

2.3. Best constant and direct Minimizaton

Let ⌦M ⇢ M be any smooth n�dimensional submanifold of M , possibly with
boundary. In the sequel, we will either take ⌦M = M , or M \ Bx0(✏0) for some
✏0 > 0 small enough. We define H2

k,0(⌦M ) ⇢ H2
k(M) as the completion of C1

c (⌦M )
for the norm k · kH2

k

. In this section, we prove the following result in the spirit of
Aubin [3]:

Theorem 2.3. Let (M, g) be a compact Riemannian manifold of dimension
n > 2k, with k � 1. ⌦M ⇢ M be any smooth n�dimensional submanifold of M
as above. Let P be a di↵erential operator as in (2.3) and let f 2 C0,✓(⌦M ) be
a Hölder continuous positive function. Assume that P is coercive on H2

k,0(⌦M ).
Suppose that

(2.45) inf
u2N

f

Z

⌦
M

uP (u) dvg <
1

�
sup⌦

M

f
� 2

2
]

k K0(n, k)

,

where

Nf := {u 2 H2
k,0(⌦M ) :

Z

⌦
M

f |u|2]k dvg = 1}(2.46)

Then there exists a minimizer u 2 Nf . Moreover, up to multiplication by a constant,
u 2 C2k(⌦M ) is a solution to

(
Pu = f |u|2]k�2 u in ⌦M

D↵u = 0 on @⌦M for |↵|  k � 1.



2.3. BEST CONSTANT AND DIRECT MINIMIZATON 31

In addition, if the Green’s function of P on ⌦M with Dirichlet boundary condition
is positive, then any minimizer is either positive or negative. When ⌦M = M , and
the Green’s function of P on M is positive, then up to changing sign, u > 0 is a
solution to

Pu = fu2]
k

�1 in M.

Proof of Theorem 2.3: This type of result is classical. We only sketch the proof.
For simplicity, we take ⌦M = M . The proof of the general case is similar. Here
and in the sequel, we define (see (2.5))

IP (u) :=

Z

M

uP (u) dvg for all u 2 H2
k(M).

We start with the following lemma:

Lemma 2.3.1. Let (ui) 2 Nf be a minimizing sequence for IP on Nf . Then

(i) Either there exists u0 2 Nf such that ui ! u0 strongly in H2
k(M), and u0

is a minimizer of IP on Nf

(ii) Or there exists x0 2 ⌦M such that f(x0) = max⌦
M

f and |ui|2]k dvg *
�x0 as i ! +1 in the sense of measures. Moreover, inf

u2N
f

IP (u) =

1

K0(n,k)(max
M

f)

2

2
]

k

.

Proof of Lemma 2.3.1: We define ↵ := inf{IP (u)/ u 2 Nf}. As the functional Ig is
coercive so the sequence (ui) is bounded in H2

k(M). We let u0 2 H2
k(M) such that,

up to a subsequence, ui * u0 weakly in H2
k(M) as i ! +1, and ui(x) ! u0(x) as

i ! +1 for a.e. x 2 M . Therefore,

ku0k2
]

k

L2
]

k

 lim inf
i!+1

kuik2
]

k

L2
]

k

= 1(2.47)

We define vi := ui � u0. Up to extracting a subsequence, we have that (vi)i ! 0 in

H2
k�1(M). We define µi := (�k/2

g ui)2 dvg and ⌫̃i = |ui|2]k dvg and ⌫i = f |ui|2]k dvg
for all i. Up to a subsequence, we denote respectively by µ, ⌫̃ and ⌫ their limits in
the sense of measures. It follows from the concentration-compactness Theorem 2.4
that,

(2.48) ⌫̃ = |u0|2
]

k dvg +
X

j2J
↵j�x

j

and µ � (�k/2
g u0)

2 dvg +
X

j2I
�j�x

i

where J ⇢ N is at most countable, (xj)j2J 2 M is a family of points, and (↵j)j2J 2
R�0, (�j)j2J 2 R�0 are such that

↵
2/2]

k

j  K0(n, k) �j for all j 2 J.(2.49)

As a consequence, we get that

(2.50) ⌫ = f |u0|2
]

k dvg +
X

j2J
f(xj)↵j�x

j

Since (ui) 2 Nf , and M is compact, we have that
R
M

d⌫ = 1 and then

(2.51) 1 =

Z

M

f |u0|2
]

k dvg +
X

j2J
f(xj)↵j .
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Since (ui)i ! u0 strongly in H2
k�1(M), integrating (2.48) yields

(2.52) ↵ � IP (u0) +
X

j2J
�j � ↵ku0k22]

k

+K0(n, k)
�1

X

j2J
↵
2/2]

k

j .

Since ↵  K0(n, k)�1(maxM f)�2/2]
k , we then get that

(i) either ku0k2]
k

= 1 and ↵j = 0 for all j 2 J ,

(ii) or u0 ⌘ 0, f(xj0)↵j0 = 1 for some j0 2 J , f(xj0) = maxM f and ↵j = 0
for all j 6= j0.

In case (i), we get from the strong convergence to 0 of (vi)i in H2
k�1(M) that

IP (ui) =
R

M

(�k/2
g vi)2 dvg + IP (u0) + o(1) as i ! +1. Since u0 2 Nf and (ui) is

a minimizing sequence, we then get that (vi)0 goes to 0 strongly in H2
k(M), and

therefore ui ! u0 strongly in H2
k(M).

In case (ii), (2.52) yields ↵ = K0(n, k)�1(maxM f)�2/2]
k and IP (u0) = 0, which

yields u0 ⌘ 0 since the operator is coercive.

This completes the proof of Lemma 2.3.1. 2

We go back to the proof of Theorem 2.3. Let (ui)i be a minimizing sequence for IP
on Nf . It follows from the assumption (2.45) that case (i) of Lemma 2.3.1 holds,
and then, there exists a minimizer u0 2 Nf that is a minimizer. Therefore, it is

a weak solution to P k
g u0 = ↵f |u0|2

]

k

�2 u0 in M (see (2.145) for the definition). It

then follows from the regularity Theorem 2.8.3 that u 2 C2k,✓(M).

We let G : M⇥M \{(x, x)/ x 2 M} be the Green’s function of P on M . We assume
that G(x, y) > 0 for all x 6= y 2 M . Green’s representation formula yields

(2.53) '(x) =

Z

M

G(x, y)(P')(y) dvg for all x 2 M and all ' 2 C2k(M).

It follows from Proposition 2.8.2 that there exists v 2 H2
k(M) such that

Pv = ↵f |u0|2
]

k

�1 in M.(2.54)

Standard regularity (taking inspiration from Vand der Vorst [35]) yields v 2 C2k(M).
We have that P (v ± u0) � 0. Since G > 0, it follows from Green’s formula (2.53)
that v ± u0 � 0. So v � |u0| and therefore v 6= 0. Independently, since Pv � 0 and
v 6⌘ 0, Green’s formula (2.53) yields v > 0. Using Hölder’s inequality and v � |u0|,
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we get that

JP (u) =

R

M

vP (v) dvg

✓ R

M

f |v|2]k dvg

◆2/2]
k

=

↵
R

M

vf |u0|2
]

k

�1 dvg

✓ R

M

f |v|2]k dvg

◆2/2]
k

(2.55)


↵

✓R

M

f |v|2]k dvg

◆ 1

2
]

k

✓R

M

f |u0|2]k dvg

◆ 2
]

k

�1

2
]

k

✓ R

M

f |v|2]k dvg

◆2/2]
k

(2.56)


↵

✓R

M

f |u0|2]k dvg

◆ 2
]

k

�1

2
]

k

✓ R

M

f |u0|2]k dvg

◆1/2]
k

 ↵

0

@
Z

M

f |u0|2
]

k dvg

1

A

2
]

k

�2

2
]

k

 ↵(2.57)

since
R

M

f |u0|2
]

k dvg = 1. Since ↵ is the infimum of the functional, we get that

JP (u) = ↵. Hence v attains the infimum and therefore it also solves the equation

Pv = µfv2
]

k

�1 weakly in M , and v 2 H2
k,0(M). Moreover, one has equality in all

the inequalities above, and then |u0| = v > 0, and therefore either u0 > 0 or u0 < 0
in M . This ends the proof of Theorem 2.3. 2

2.4. Concentration Compactness Lemma

We now state and prove the concentration compactness lemma in the spirit of
P.-L.Lions for the case of a closed manifold:

Theorem 2.4 (Concentration-compactness). Let (M, g) be a smooth, compact
Riemannian manifold of dimension n and let k be a positive integer such that 2k <
n. Suppose (um) be a bounded sequence in H2

k(M). Up to extracting a subsequence,
there exist two nonnegative Borel-regular measure µ, ⌫ on M and u 2 H2

k(M) such
that

(a) um * u weakly in H2
k(M)

(b) µm := (�k/2
g um)2 dvg * µ weakly in the sense of measures

(c) ⌫m := |um|2]k dvg * ⌫ weakly in the sense of measures

Then there exists an at most countable index set I, a family of distinct points
{xi 2 M : i 2 I}, families of nonnegative weights {↵i : i 2 I} and {�i : i 2 I} such
that
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(i)

⌫ =|u|2]k dvg +
X

i2I
↵i�x

i

(2.58)

µ �(�k/2
g u)2 dvg +

X

i2I
�i�x

i

(2.59)

where �x denotes the Dirac mass at x 2 M with mass equal to 1.

(ii) for all i 2 I, ↵2/2]
k

i  K0(n, k) �i. In particular
P
i2I

↵
2/2]

k

i < 1.

Proof of Theorem 2.4: By the Riesz representation theorem (µm), and (⌫m) are
sequences of Radon measures on M .

Step 1: First we assume that u ⌘ 0. Let ' 2 C1(M), then from (2.2) we have

that, given any " > 0 there exists B" 2 R such that

0

@
Z

M

|'um|2]k dvg

1

A
2/2]

k

 (K0(n, k) + ")

Z

M

(�k/2
g ('um))2 dvg +B"||'um||2H2

k�1

(2.60)

Since um * 0 in H2
k(M), letting m ! +1 and then taking the limit " ! 0, it

follows that

0

@
Z

M

|'|2]k d⌫

1

A
2/2]

k

 K0(n, k)

Z

M

'2 dµ(2.61)

By regularity of the Borel measure ⌫, (2.61) holds for any Borel measurable function
' and in particular for any Borel set E ⇢ M we have

⌫(E)2/2
]

k  K0(n, k) µ(E)(2.62)

Therefore the measure ⌫ is absolutely continuous with respect to the measure µ
and hence by the Radon-Nikodyn theorem, we get

(2.63) d⌫ = fdµ and dµ = gd⌫ + d�

where f 2 L1(M,µ) and g 2 L1(M, ⌫) are nonnegative functions, � is a positive
Borel measure on M and d⌫?d�.

Let S = M\(supp �). Then for any ' 2 C(M) with support supp(') ⇢ S one has
Z

M

' d⌫ =

Z

M

'f dµ =

Z

M

' fg d⌫(2.64)

By regularity of the Borel measures µ and ⌫ (2.64) holds for any Borel measurable
function '. This implies that fg = 1 a.e with respect to ⌫. So, in particular g > 0
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⌫ a.e in S. Let  2 C(M), taking ' =  �S in (2.61) we have

0

@
Z

M

| |2]kXS d⌫

1

A
2/2]

k

 K0(n, k)

Z

M

 2XS dµ

= K0(n, k)

Z

M

 2XS [gd⌫ + d�] = K0(n, k)

Z

M

 2gXS d⌫(2.65)

Since d⌫?d� and supp ⌫ ⇢ S, we get that

0

@
Z

M

| |2]k d⌫

1

A
2/2]

k

 K0(n, k)

Z

M

 2g d⌫(2.66)

By regularity of the Borel measure ⌫ the above relation holds for any Borel mea-
surable function  .

Let � 2 C(M) and let  = �g
1

2
]

k

�2X{gN} , d⌫N = g

2
]

k

2
]

k

�2X{gN}d⌫. Then we have

0

@
Z

M

|�|2]k d⌫N

1

A
2/2]

k

 K0(n, k)

Z

M

�2 d⌫N(2.67)

By regularity of the Borel measure ⌫ the above relation holds for any Borel mea-
surable function �.
It follows from Proposition 2.4.1 below that for each N there exist a finite set IN ,
a finite set of distinct points {xi : i 2 IN}and a finite set of weights {↵̃i : i 2 IN}
such that

d⌫N =
X

i2I
N

↵̃i �x
i

(2.68)

Let I =
1S

N=1
IN . Then I is a countable set. For a Borel set E, then one has by

monotone convergence theorem

Z

M

�E g

2
]

k

2
]

k

�2 d⌫ = lim
N!1

Z

M

�E d⌫N(2.69)

So g

2
]

k

2
]

k

�2 d⌫ =
P
i2I

↵̃i�x
i

. Since g > 0 ⌫ a.e , there exists ↵i > 0 such that we have

d⌫ =
P
i2I

↵i�x
i

. Since µ = gd⌫ + d� � gd⌫, we get that

µ �
X

i2I
�i�x

i

where �i = g(xi)↵i(2.70)

Taking  = X{x
i

} in (2.66) we have for all i 2 I

↵
2/2]

k

i  K0(n, k) g↵i = K0(n, k) �i(2.71)
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and

1

K0(n, k)

X

i2I
↵
2/2]

k

i 
X

i2I
�i  µ(M) < +1(2.72)

This proves the theorem for u ⌘ 0. This ends Step 1.

Step 2: Assume u 6⌘ 0 and let vm := um � u. Then vm * 0 weakly in H2
k(M).

Therefore, as one checks, µ̃m := (�k/2
g vm)2 dvg * µ � (�k/2

g u)2 dvg and ⌫̃m :=

|vm|2]k dvg * ⌫� |u|2]k dvg weakly in the sense of measures. Applying Step 1 to the
measures µ̃m and ⌫̃m yields Theorem 2.4. 2

We now prove the reversed Hölder inequality that was used in the proof.

Proposition 2.4.1. Let µ be a finite Borel measure on M and suppose that
for any Borel measurable function ' one has

0

@
Z

M

|'|q dµ

1

A
1/q

 C

0

@
Z

M

|'|p dµ

1

A
1/p

(2.73)

for some C > 0 and 1  p < q < +1. Then there exists j points x1, . . . , xj 2 M ,
and j positive real numbers c1, . . . , cj such that

µ =
jX

i=1

ci�x
i

(2.74)

where �x denotes the Dirac measure concentrated at x 2 M with mass equal to 1.
Moreover ci � ( 1

C )
pq

q�p .

Proof. Let E be a Borel set in M . Taking ' = �E we obtain that, either
µ(E) = 0 or µ(E) � ( 1

C )
pq

q�p

We define O := {x 2 M : for some r > 0 µ(Bx(r)) = 0}. Then O is open. Now
if K ⇢ O is compact, then K can be covered by a finite number of balls each of
which has measure 0, therefore µ(K) = 0. By the regularity of the measure hence it

follows that µ(O) = 0. If x 2 M\O, then for all r > 0 one has µ(Bx(r)) � ( 1
C )

pq

q�p .
Then

µ({x}) = lim
m!+1

µ(Bx(1/m)) �
✓
1

C

◆ pq

q�p

(2.75)

Since the measure µ is finite, this implies that that the set M\O is finite. So let
M\O = {x1, · · · , xj}, therefore for any borel set E in M

µ(E) = µ(E \ {x1, · · · , xj}) =
X

x
i

2E

µ({xi}) =
jX

i=1

µ({xi})�x
i

(E)(2.76)

Hence the lemma follows with ci = µ({xi}). ⇤
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2.5. Topological method of Coron

In this section we obtain higher energy solutions by Coron’s topological method
if the functional JP does not have a minimizer, for the case f ⌘ 1. This will
complete the proof of the first part of Theorem 2.1, that is the existence of solutions
to (2.4) with no sign-restriction. For µ > 0 and y0 2 Rn, we define

(2.77) By0,µ(y) = ↵n,k

 
µ

µ2 + |y � y0|2
!n�2k

2

where the choice of ↵n,k’s are such that for all µ, kBy0,µk
L2

]

k

= 1 and kBy0,µk2Dk,2 =
1

K0(n,k)
. These functions are the extremal functions of the Euclidean Sobolev In-

equality (2.10) and they satisfy the equation

�kBy0,µ =
1

K0(n, k)
B2]

k

�1
y0,µ in Rn(2.78)

Let ⌘̃r 2 C1
c (Rn), 0  ⌘̃r  1 be a smooth cut-o↵ function, such that ⌘̃r = 1 for

x 2 B0(r) and ⌘̃r = 1 for x 2 Rn\B0(2r). Let ◆g > 0 be the injectivity radius of
(M, g). For any p 2 M , we let ⌘p be a smooth cut-o↵ function on M such that

⌘p(x) =

⇢
⌘̃ ◆

g

10
(exp�1

p (x)) for x 2 Bp(◆g) ⇢ M

0 for x 2 M\Bp(◆g)
(2.79)

For any x 2 M , we define

BM
p,µ(x) = ⌘p(x) B0,µ(exp

�1
p (x))(2.80)

BM
p,µ is the standard bubble centered at the point p 2 M and with radius µ

BM
p,µ(x) = ↵n,k⌘p(x)

 
µ

µ2 + dg(p, x)
2

!n�2k
2

(2.81)

We have

Proposition 2.5.1. Let (M, g) be a smooth, compact Riemannian manifold of
dimension n and let k be a positve integer such that 2k < n. Consider the functional
JP on the space H2

k(M)\{0}. Then the sequence of functions
�BM

p,µ

� 2 C1(M) de-
fined above is such that:

(a) lim
µ!0

JP (BM
p,µ) =

1
K0(n,k)

uniformly for p 2 M

(b) lim
µ!0

��BM
p,µ

��
L2

]

k

= 1 uniformly for p 2 M

(c) BM
p,µ * 0 weakly in H2

k(M), as µ ! 0
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Proof of Proposition 2.5.1: We claim that (c) holds. We first prove that BM
p,µ is

uniformly bounded in H2
k(M). Indeed,

X

↵k

Z

M

⇣
�↵/2

g BM
p,µ

⌘2
dvg 

X

↵k

Z

B
p

(◆
g

/5)

⇣
�↵/2

g BM
p,µ

⌘2
dvg

 C
X

lk

Z

B0(◆g/5)

��rl BM
p,µ � expp

��2 dx


X

lk

Z

B0(◆g/5)

�����r
l

✓
µ

µ2 + |x|2
◆n�2k

2

�����

2

dx


X

lk

Z

B0(◆g/(5µ))

µ2(k�l)

����rl
�
1 + |x|2��

n�2k
2

����
2

dx.

As one checks, the right-hand-side is uniformly bounded wrt µ ! 0, so (BM
p,µ) is

uniformly bounded wrt p and µ ! 0. Moreover, the above computations yieldR
M
(BM

p,µ)
2 dvg ! 0 as µ ! 0. Therefore, BM

p,µ * 0 as µ ! 0 uniformly wrt p 2 M .
This proves the claim.

The space H2
k(M) is compactly embedded in H2

k�1(M). Therefore BM
p,µ ! 0 in

H2
k�1(M) as µ ! 0. Hence

lim
µ!0

0

@
k�1X

l=0

Z

M

Al(g)(rlBM
p,µ,rlBM

p,µ) dvg

1

A = 0(2.82)

Now we estimate the term
R

M

| BM
p,µ|2

]

k dvg. We fix R > 0. We claim that

lim
R!+1

lim
µ!0

Z

M\B
p

(µR)

| BM
p,µ|2

]

k dvg = 0(2.83)

Now for µ su�ciently small

Z

M\B
p

(µR)

| BM
p,µ|2

]

k dvg =

Z

B
p

(◆
g

)\B
p

(µR)

| BM
p,µ|2

]

k dvg

=

Z

B0(◆g)\B0(µR)

| BM
p,µ(expp(y))|2

]

k

q
|g(expp(y))| dy


Z

B0(
◆

g

µ

)\B0(R)

|B0,1(y)|2
]

k

q
|g(expp(µy))| dy.(2.84)

Since B0,1 2 L2]
k(Rn), this yields the claim.
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Similarly, for µ su�ciently small
Z

B
p

(µR)

| BM
p,µ|2

]

k dvg =

Z

B0(µR)

| BM
p,µ(expp(y))|2

]

k

q
|g(expp(y))| dy(2.85)

=

Z

B0(R)

| B0,1|2
]

k

q
|g(expp(µy))| dy(2.86)

=

Z

B0(R)

| B0,1|2
]

k dy + o
⇣
kB0,1k

L2
]

k

⌘
as µ ! 0(2.87)

Therefore

lim
µ!0

Z

M

| BM
p,µ|2

]

k dvg =

Z

Rn

| B0,1|2
]

k dvg(2.88)

So we have (b).

Finally we estimate the term
R

M

(�k/2
g BM

p,µ)
2 dvg. We fix R > 0. By calculating in

terms of the local coordinates given by expp, we get for µ su�ciently small
Z

B
p

(µR)

(�k/2
g BM

p,µ)
2 dvg =

Z

B0(R)

(�k/2B0,1)
2 dy + o (1) as µ ! 0.(2.89)

We claim that

lim
R!+1

lim
µ!0

Z

M\B
p

(µR)

(�k/2
g BM

p,µ)
2 dvg = 0.(2.90)

We prove the claim. Indeed, via the exponential map at p, we have that
Z

M\B
p

(µR)

(�k/2
g BM

p,µ)
2 dvg =

Z

B
p

(◆
g

)\B
p

(µR)

(�k/2
g BM

p,µ)
2 dvg(2.91)

=

Z

B0(◆g)\B0(µR)

(�k/2
exp⇤

p

g B0,µ)
2 dvexp⇤

p

g(2.92)

 C
kX

|↵|=0

Z

B0(◆g)\B0(µR)

|D↵(⌘̃ ◆

g

10
B0,µ)|2 dx(2.93)

Since B0,µ ! 0 strongly in H2
k�1,loc(Rn), then, as µ ! 0, we have that

Z

M\B
p

(µR)

(�k/2
g BM

p,µ)
2 dvg  C

Z

B0(◆g)\B0(µR)

⌘̃2◆
g

10
|DkB0,µ|2 dx+ o(1)(2.94)

 C

Z

B0(◆g/µ)\B0(R)

|DkB0,1|2 dx+ o(1)  C

Z

Rn\B0(R)

|DkB0,1|2 dx+ o(1).(2.95)

Since DkB0,1 2 L2(Rn), this yields (2.90). This proves the claim.

Equations (2.89) and (2.90) yield (a) and (b) of Proposition 2.5.1 for any fixed
p 2 M . Since the manifold M is compact, we note that in the above calculations
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there is no dependence on the point p of the closed manifold M . So the convergence
is uniform for all points p 2 M . This ends the proof of Proposition 2.5.1. 2

Fix some ✓ such that 1
K0(n,k)

+4✓ < 22k/n 1
K0(n,k)

. Then from (2.5.1) it follows that,

there exists µ0 small, such that for all µ 2 (0, ◆gµ0) and for all p 2 M we have

JP (BM
p,µ) 

1

K0(n, k)
+ ✓(2.96)

We fix x0 2 M , and we assimilate isometrically Tx0M to Rn, and we define the

sphere Sn := {x 2 Rn/ kxk = 1}. For (�, t) 2 Sn ⇥ [0, ◆g/2), we define �M
t :=

expx0(t�) and

u�
t (x) = ↵n,k⌘�M

t

(x)

"
µ0(◆g/2� t)

(µ0(◆g/2� t))2 + dg(�M
t , x)

2

#n�2k
2

= BM
�M

t

,µ0(◆g/2�t)(2.97)

It then follows from our previous step and the choice of µ0 in (2.96)

JP (u
�
t ) 

1

K0(n, k)
+ ✓ 8(�, t) 2 Sn ⇥ [0, ◆g/2).(2.98)

Let ⌘ 2 C1
c (Rn) be a smooth, nonnegative, cut-o↵ function such that ⌘(x) = 1 for

|x| � 1/2 and ⌘(x) = 0 for |x| < 1/4. For R � 1, let ⌘R be a smooth, nonnegative,
cut-o↵ function, such that

⌘R(x) =

(
1 if dg(x0, x) � ◆

g

10R

⌘
⇣

10R
◆
g

exp�1
x0

(x)
⌘

if dg(x0, x) <
◆
g

10R

(2.99)

Then the functions ⌘R are such that ⌘R(x) = 1 if dg(x0, x) � ◆
g

20R and ⌘R(x) = 0 if
dg(x0, x) <

◆
g

40R . We define

(2.100) v�t,R(x) := ⌘R(x) u
�
t (x) for all x 2 M.

Then we have

Proposition 2.5.2.

lim
R!+1

v�t,R = u�
t in H2

k(M) uniformly 8(�, t) 2 Sn ⇥ [0, ◆g/2).(2.101)

Proof of Proposition 2.5.2: We first note that for all (�, t) 2 Sn ⇥ [0, ◆g/2) the
functions u�

t are uniformly bounded in C2k-norm in the ball Bx0(
◆
g

20 ) ⇢ M . And
for any nonnegative integer ↵, one has |r↵

g ⌘R|g  CR↵. Therefore

��v�t,R � u�
t

��2
H2

k

=
kX

↵=0

Z

M

(�↵/2
g (v�t,R � u�

t ))
2 dvg(2.102)

=
kX

↵=0

Z

B
x0 (

◆

g

20R )

(�↵/2
g (v�t,R � u�

t ))
2 dvg(2.103)

=
kX

↵=0

Z

B
x0 (

◆

g

20R )

(�↵/2
g ((⌘R � 1)u�

t ))
2 dvg = O

✓
1

R

◆
( as n � 2k + 1 )(2.104)
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The above convergence is uniform w.r.t (�, t) 2 Sn ⇥ [0, ◆g/2). This proves Propo-
sition 2.5.2. 2

So it follows that, there exists R0 > 0, large, such that for all R � R0 one has

JP (v
�
t,R)  JP (u

�
t ) + 2✓ < 22k/n

1

K0(n, k)
8 (�, t) 2 Sn ⇥ [0, ◆g/2)(2.105)

As one checks for any (�, t) 2 Sn⇥[0, ◆g/2), the functions v�t,R0
6= 0, and has support

in M\Bx0(◆g/40R0). Let ✏0 > 0 be such that M\Bx0(◆g/40R0) ⇢ M\Bx0(✏0) and
we define

(2.106) ⌦✏0 := M\Bx0(✏0)

Then for any (�, t) 2 Sn ⇥ [0, ◆g/2) the functions v�t,R0
2 H2

k,0(⌦✏0)\{0}. Proposi-
tions 2.5.1 and 2.5.2 yield

lim
t!◆

g

/2
JP (v

�
t,R0

) =
1

K0(n, k)
uniformly for all � 2 Sn.(2.107)

Also v�0,R0
is a fixed function independent of � and

v�t,R0
* �exp

x0 (
◆

g

2 �) weakly in the sense of measures as t ! ◆g/2(2.108)

We define Sk := K0(n, k)�1. For any c 2 R, we define the sublevel sets of the
functional IP on N✏0

Ic := {u 2 N✏0 : IP (u) < c}(2.109)

where N✏0 := {u 2 H2
k,0(⌦✏0)/ kuk2]

k

= 1}.

Proposition 2.5.3. Suppose IP (u) >
1

K0(n,k)
for all u 2 N✏0 , then there exists

�0 > 0 for which there exists a continuous map

� : IS
k

+�0 �! ⌦✏0(2.110)

such that if (ui) 2 IS
k

+�0 is a sequence such that |ui|2]k dvg * �p0 weakly in the
sense of measures, for some point p0 2 ⌦✏0 , then

lim
i!+1

�(ui) = p0(2.111)

Proof of Proposition 2.5.3: By the Whitney embedding theorem, the manifold M
admits a smooth embedding into R2n+1. If we denote this embedding by F : M !
R2n+1, then M is di↵eomorphic to F(M) where F(M) is an embedded submanifold
of R2n+1. For u 2 N✏0 , we define

�̃(u) :=

Z

⌦
M

F(x) |u(x)|2]k dvg(x)(2.112)

Then �̃ : N✏0 ! R2n+1 is continuous. Next we claim that for every ✏ > 0 there
exists a � > 0 such that

u 2 IS
k

+� ) dist
⇣
�̃(u),F(⌦✏0)

⌘
< ✏(2.113)
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Suppose that the claim is not true, then there exists an ✏0 > 0 and a sequence (ui) 2
N✏0 , such that lim

i!+1
IP (ui) = Sk and dist

⇣
�̃(u),F(⌦✏0)

⌘
� ✏0. Since there is no

minimizer for IP on N✏0 , it follows from Lemma 2.3.1 that for such a sequence (ui)

there exists a point p0 2 ⌦✏0 such that |ui|2]kdvg * �p0 weakly in the sense of measures.

So �̃(ui) ! F(p0), a contradiction since dist
⇣
�̃(u),F(⌦✏0)

⌘
� ✏0. This proves our

claim.

By the Tubular Neighbourhood Theorem, the embedded submanifold F(M) has a
tubular neighbourhood U in R2n+1 and there exists a smooth retraction

⇡ : U �! F(M)(2.114)

Choose an ✏0 > 0 small so that {y 2 R2n+1 : dist (y,F(M)) < ✏0} ⇢ U . Then from
our previous claim it follows that, there exists �0 > 0 such that

u 2 IS
k

+�0 ) �̃(u) 2 U(2.115)

We define

�M (u) = F�1 � ⇡
0

@
Z

M

F(x) |u(x)|2]k dvg(x)

1

A(2.116)

Then the map �M : IS
k

+�0 ! M is continuous. Similarly as in our previous claim
we have: for every ✏ > 0 small there exists � > 0 such that

u 2 IS
k

+� ) dg
�
�M (u),⌦✏0

�
< ✏(2.117)

Let ⇡⌦
✏0 : M\Bx0(✏0/2) �! ⌦✏0be a retraction. Choose an ✏0 > 0 small so that

{p 2 M : dg
�
p,⌦✏0

�
< ✏0} ⇢ M\Bx0(✏0/2) . Then from our claim it follows that

there exists a �0 > 0 such that �M (u) 2 M\Bx0(✏0/2) for all u 2 IS
k

+�0 . So for

u 2 IS
k

+�0 we define �(u) := ⇡⌦
✏0 ��M (u). Then the map � satisfies the hypothesis

of the proposition. This proves Proposition 2.5.3. 2

Now we proceed to prove the first part of Theorem 2.1. By the regularity result
obtained in Theorem 2.8.3, it is su�cient to show the existence of a non-trivial
H2

k,0(⌦✏0) weak solution to the equation (see (2.145) for the definition)
(

Pu = |u|2]k�2 u in ⌦M

D↵u = 0 on @⌦M for |↵|  k � 1
(2.118)

Suppose on the contrary the above equation only admits trivial solutions, we will
show that this leads to a contradiction.

Definition 2.5.1. Let (X, k · k) be a Banch space and fix F 2 C1(X). A
sequence (um) in X is a Palais-Smale sequence for F if F (um)  C, uniformly in
m, while DF (um) ! 0 strongly in X 0 as m ! +1. We say that F satisfies the
Palais-Smale condition at c 2 R, (P.S)c for short, if every Palais-Smale sequence
(um) such that F (um) ! c as m ! +1 has a strongly convergent subsequence.

Now suppose that the functional IP has no critical point in N✏0 , that is there is not
weak solution to (2.118). This is equivalent to the assertion that the functional

(2.119) FP (u) =
1

2

Z

⌦
✏0

uP (u) dvg � 1

2]k

Z

⌦
✏0

|u|2]k dvg
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does not admit a nontrivial critical point in H2
k,0(⌦✏0).

Proposition 2.5.4. If equation (2.118) admits only the trivial solution u ⌘ 0,

then the functional IP satisfies the (P.S)c condition for c 2 (Sk, 2
2k
n Sk).

Proof of Proposition 2.5.4: Let (vi) 2 N✏0 be a Palais-Smale sequence for the

functional IP such that lim
i!+1

IP (vi) = c 2 (Sk, 2
2k
n Sk), if this exists. Define

ui := (IP (vi))
1

2
]

k

�2 vi. Then (ui) is a Palais-Smale sequence for the functional FP

on the space H2
k,0(⌦✏0) such that lim

i!+1
FP (ui) 2 ( knS

n/2k
k , 2k

n Sn/2k
k ). Since there

is no nontrivial solution to (2.118), it follows from the Struwe-decomposition for
polyharmonic operators by the author [28] that there exists d 2 N non-trivial
functions uj 2 Dk,2(Rn), j = 1, . . . , d, such that upto a subsequence the following
holds

FP (ui) =
dX

j=1

E(uj) + o(1) as i ! +1(2.120)

where E(u) := 1
2

R

Rn

(�k/2u)2dx � 1
2]
k

R

Rn

|u|2]kdx. The uj ’s are nontrivial solutions

in Dk,2(Rn) to �ku = |u|2]k�2u on Rn or on {x 2 Rn/ x1 < 0} with Dirichlet
boundary condition (we refer to [28] for details). It then follows from Lemma 3
and 5 of Ge-Wei-Zhou [18] that for any j, either uj has fixed sign and E(u) =
k
nS

n/2k
k , or uj changes sign and E(u) � 2k

n Sn/2k
k , contradicting lim

i!+1
FP (ui) 2

( knS
n/2k
k , 2k

n Sn/2k
k ). Therefore the Palais-Smale condition holds at level c 2 (Sk, 2

2k
n Sk).

More precisely, there is even no Palais-Smale sequence at this level. This ends the
proof of Proposition 2.5.4. 2

Proof of Theorem 2.1: By the Deformation Lemma (see Theorem II.3.11 and Re-
mark II.3.12 in the monograph by Struwe [33]), there exists an retraction � :
IS

k

+4✓ �! IkS
k

+�0
, where �0 is as given in Proposition 2.5.3. Let rN

✏0
: H2

k,0(⌦✏0)\{0} !
N✏0 be the projection given by u 7! u

kuk
L

2
]

k

. Consider the map h : Sn ⇥ [0, ◆g/2] !
⌦✏0 given by

h(�, t) :=

⇢
� � �(rN

✏0
(v�t,R0

)) for t < ◆g/2
�M
◆
g

/2 for t = ◆g/2
(2.121)

where �M
t := expx0(t�). This map is well defined and continuous by Proposition

2.5.3 and there exists p0 2 ⌦✏0 such that

h(�, t) =

⇢
p0 for t = 0
expx0(

◆
g

2 �) for t = ◆g/2
(2.122)

So we obtain a homotopy of the embedded (n�1)� dimensional sphere {expx0(
◆
g

2 �) :
� 2 Sn}to a point in ⌦✏0 , which is a contradiction to our topological assumption.
This proves Theorem 2.1 for potentially sign-changing solutions.
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2.6. Positive solutions

This section is devoted to the second part of Theorem 2.1, that is the existence
of positive solutions. The proof is very similar to the proof of Theorem 2.1 with
no restriction on the sign. We just stress on the specificities and refer to the
proof of Theorem 2.1 everytime it is possible. We let ⌦M ⇢ M be any smooth

n�dimensional submanifold of M , possibly with boundary. In the sequel, we will
either take ⌦M = M , orM\Bx0(✏0). For u 2 H2

k,0(⌦M ), we define u+ := max{u, 0},
u� := max{�u, 0} and

N+ := {u 2 H2
k,0(⌦M ) :

Z

⌦
M

(u+)2
]

k dvg = 1}(2.123)

which is a codimension 1 submanifold ofH2
k,0(⌦M ). Any critical point u 2 H2

k,0(⌦M )
of Ig on N+ is a weak solution to

(2.124) Pu = u
2]
k

�1
+ in ⌦M ; D↵u = 0 on @⌦M for |↵|  k � 1.

Consider the Green’s function GP associated to the operator P with Dirichlet
boundary condition on the smooth domain ⌦M ( M , which is a function GP :
⌦M ⇥ ⌦M\{(x, x) : x 2 ⌦M} �! R such that

(i) For any x 2 ⌦M , the function GP (x, ·) 2 L1(⌦M )

(ii) For any ' 2 C1(⌦M ) such that D↵' = 0 on @⌦M for all |↵|  k � 1, we
have that

'(x) =

Z

⌦
M

GP (x, y) P'(y) dvg(y)(2.125)

Lemma 2.6.1. Let (ui) 2 N+ be a minimizing sequence for Ikg on N+. Then

(i) Either there exists u0 2 N+ such that ui ! u0 strongly in H2
k,0(⌦M ), and

u0 is a minimizer of IP on N+

(ii) Or there exists x0 2 ⌦M such that |ui|2]k dvg * �x0 as i ! +1 in the
sense of measures. Moreover, inf

u2N+

IP (u) =
1

K0(n,k)
.

Proof of Lemma 2.6.1: As the functional Ig is coercive so the sequence (ui) is
bounded in H2

k,0(⌦M ). We let u0 2 H2
k,0(⌦M ) such that, up to a subsequence,

ui * u0 weakly in H2
k,0(⌦M ) as i ! +1, and ui(x) ! u0(x) as i ! +1 for a.e.

x 2 ⌦M . As the sequences (u+
i ), (u

�
i ) is bounded in L2]

k(⌦M ) and u+
i (x) ! u+

0 (x),
u�
i (x) ! u�

0 (x) for a.e. x 2 ⌦M , integration theory yields

(2.126) u+
i * u+

0 and u�
i * u�

0 weakly in L2]
k(⌦M ) as i ! +1.

Therefore,

��u+
0

��2
]

k

L2
]

k

 lim inf
i!+1

��u+
i

��2
]

k

L2
]

k

= 1 and
��u�

0

��2
]

k

L2
]

k

 lim inf
ı!+1

��u�
i

��2
]

k

L2
]

k

(2.127)

We claim that

(2.128) u�
i ! u�

0 strongly in L2]
k(⌦M )
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We prove the claim. We define vi := ui � u0. Up to extracting a subsequence, we
have that (vi)i ! 0 in H2

k�1(M). Therefore, as i ! +1,

IP (ui) =

Z

⌦
M

(�k/2
g vi)

2 dvg + IP (u0) + o(1)(2.129)

And then, letting ↵ := inf
u2N+

IP (u), we have that

↵ = IP (ui) + o(1) �
Z

⌦
M

(�k/2
g vi)

2 dvg + ↵
��u+

0

��2
L2

]

k

+ o(1)

and then

(2.130) ↵
⇣
1� ��u+

0

��2
L2

]

k

⌘
�

Z

⌦
M

(�k/2
g vi)

2 dvg + o(1)

as i ! +1. We fix ✏ > 0. It then follows from (2.11) and (vi)i ! 0 in H2
k�1(M)

that

↵ (K0(n, k) + ✏)
⇣
1� ��u+

0

��2
L2

]

k

⌘
� kvik2

L2
]

k

+ o(1)(2.131)

Since (a+ b)2
]

k

/2 � a2
]

k

/2 + b2
]

k

/2 for all a, b > 0, we get that

(↵ (K0(n, k) + ✏))2
]

k

/2
✓
1� ��u+

0

��2
]

k

L2
]

k

◆
� kvik2

]

k

L2
]

k

+ o(1)(2.132)

Integration theory yields kuik2
]

k

L2
]

k

= kvik2
]

k

L2
]

k

+ku0k2
]

k

L2
]

k

+o(1) as i ! +1. Therefore

(↵ (K0(n, k) + ✏))2
]

k

/2
✓
1� ��u+

0

��2
]

k

L2
]

k

◆
+ o(1) � kuik2

]

k

L2
]

k

� ku0k2
]

k

L2
]

k

=
��u+

i

��2
]

k

2]
k

� ��u+
0

��2
]

k

2]
k

+
��u�

i

��2
]

k

2]
k

� ��u�
0

��2
]

k

2]
k

= 1� ��u+
0

��2
]

k

2]
k

+
��u�

i

��2
]

k

2]
k

� ��u�
0

��2
]

k

2]
k

Then
��u�

i

��2
]

k

L2
]

k

=
��u�

i � u�
0

��2
]

k

L2
]

k

+
��u�

0

��2
]

k

L2
]

k

+ o(1) as i ! +1 yields

⇣
(µ (K0(n, k) + ✏))2

]

k

/2 � 1
⌘✓

1� ��u+
0

��2
]

k

L2
]

k

◆
+ o(1) � ��u�

i

��2
]

k

L2
]

k

� ��u�
0

��2
]

k

L2
]

k

(2.133)

=
��u�

i � u�
0

��2
]

k

L2
]

k

+ o(1)(2.134)

Since ↵K0(n, k)  1 and ✏ > 0 is arbitrary small, we get (2.128). This proves the
claim.

We define µi := (�k/2
g ui)2 dvg and ⌫i = |ui|2]k dvg for all i. Up to a subsequence,

we denote respectively by µ and ⌫ their limits in the sense of measures. It follows
from the concentration-compactness Theorem 2.4 that,

(2.135) ⌫ = |u0|2
]

k dvg +
X

j2J
↵j�x

j

and µ � (�k/2
g u0)

2 dvg +
X

j2I
�j�x

i
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where J ⇢ N is at most countable, (xj)j2J 2 M is a family of points, and (↵j)j2J 2
R�0, (�j)j2J 2 R�0 are such that ↵

2/2]
k

j  K0(n, k) �j for all j 2 J . Since u�
i ! u�

0

strongly in L2]
k(M), we then get that

(2.136) |u+
i |2

]

k dvg * |u+
0 |2

]

k dvg +
X

j2J
↵j�x

j

as i ! +1 in the sense of measures. The sequel is similar to the proof of Lemma
2.3.1. We omit the details. This completes the proof of Lemma 2.6.1. 2

Lemma 2.6.2. We assume that there is no nontrivial solution to (2.124).

Then the functional IP satisfies the (P.S)c condition on N+ for c 2 (Sk, 2
2k
n Sk) if

the equation.

Proof of Lemma 2.6.2: This is equivalent to prove that the functional

F+
P (u) =

1

2

Z

⌦
M

uP (u) dvg � 1

2]k

Z

⌦
M

(u+)2
]

k dvg(2.137)

satisfies the (P.S)c condition on H2
k,0(⌦M ) for c 2 ( knS

n/2k
k , 2k

n Sn/2k
k ). Let (ui) be

a Palais-Smale sequence for the functional F+
P on the space H2

k,0(⌦M ). Then, as

v 2 H2
k,0(⌦M ) goes to 0,

(2.138)

Z

⌦
M

uiP
k
g (v) dvg �

Z

⌦
M

(u+
i )

2]
k

�1v dvg = o
⇣
kvkH2

k

⌘

Without loss of generality we can assume that ui 2 C1
c (⌦M ) for all i. Let 'i 2

C1(⌦M ) be the unique solution of the equation
⇢

P k
g 'i = (u+

i )
2]
k

�1 in ⌦M

D↵'i = 0 on @⌦M for |↵|  k � 1
(2.139)

The existence of such 'i is guaranteed by Theorem 2.8.2. It then follows from
Green’s representation formula that

'i(x) =

Z

⌦
M

GP (x, y)(u
+
i (y))

2]
k

�1 dvg(y) � 0(2.140)

for all x 2 ⌦M . Note that the sequence ('i) is bounded in H2
k,0(⌦M ). It follows

from (2.138) that 'i = ui + o(1), where o(1) ! 0 in H2
k,0(⌦M ) as i ! +1. And

so ('i) is Palais-Smale sequences for the functional F+
P on the space H2

k,0(⌦M ).
Therefore, since 'i � 0, it is also a Palais-Smale sequence for FP defined in (2.119).
Since there is no nontrivial critical point for F+

P , using the Struwe decomposition
[28] as in the proof of Proposition 2.5.4, we then get that (')i is relatively compact
in H2

k,0(⌦M ), and so is (ui). This ends the proof of Lemma 2.6.1. 2

Proof of Theorem 2.1, positive solutions: this goes essentially as in the proof of
Theorem 2.1, the key remark being that the functions v�t,R defined in (2.100) are
nonnegative. We define N ✏0

+ = {u 2 H2
k,0(⌦✏0) : ku+k

L2
]

k

= 1}, where ⌦✏0 =

M \ B✏0(x0) and ✏0 > 0 was defined in (2.106). For c 2 R we define the sublevel
sets of the functional IP on N ✏0

+ as I+
c := {u 2 N ✏0

+ : Ikg (u) < c}. Arguing as in the
proof of Proposition 2.5.3, it follows from Lemma 2.6.1 that there exists a �0 > 0
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such that there exists � : I+
S
k

+�0
! ⌦✏0 a continous map such that: If (ui) 2 I+

S
k

+�0

is a sequence such that |u+
i |2

]

k dvg * �p0 weakly in the sense of measures, for some
point p0 2 ⌦✏0 , then lim

i!+1
�(ui) = p0.

Let rN ✏0
+

: H2
k,0(⌦✏0)\{

��u+
��
L2

]

k

= 0} ! N ✏0
+ be the map given by u 7! u

ku+k
L

2
]

k

.

Consider the map h : Sn ⇥ [0, ◆g/2] ! ⌦✏0 given by

h(�, t) =

(
� � �(rN ✏0

+
(v�t,R0

)) for t < ◆g/2

�M
◆
g

/2 for t = ◆g/2
(2.141)

where � : I+
S
k

+4✓ ! I+
S
k

+�0
is a retract (we have used Lemma 2.6.2) and �M

t =
expx0(t�). Note here that we use that v�t,R0

� 0. As in the proof of Theorem 2.1, h
is an homotopy of the embedded (n�1)�dimensional sphere {expx0(

◆
g

2 �) : � 2 Sn}
to a point in ⌦✏0 , which is a contradiction to our topological assumption. So there
exists a nontrivial critical point u for the functional IP on N ✏0

+ , which yields a
weak solution to (2.124). It then follows from the regularity theorem 2.8.3 that
u 2 C1(⌦✏0), u > 0, is a solution to (2.2). This ends the proof of Theorem 2.1 for
positive solutions. 2

2.7. An Important Remark

We remark that the topological condition of Theorem 2.1 is in general a necessary
condition. Consider the n-dimensional unit sphere Sn endowed with its standard
round metric hr and let Ph

r

be the conformally invariant GJMS operator on Sn.
By the stereographic projection it follows that Sn\{x0} is conformal to Rn. Also
one has that Sn\{x0} is contractible to a point. Let ⌦✏0 be the domain in Sn\{x0}
constructed as earlier in (2.1), and let u 2 H2

k,0(⌦✏0), u 6= 0 solve the equation

⇢
Ph

r

u = (u+)2
]

k

�1 in ⌦✏0

D↵u = 0 on @⌦✏0 for |↵|  k � 1
(2.142)

Then by the stereographic projection it follows that there exists a ball of radius R,
B0(R) such that there is a nontrivial solution v 2 H2

k,0(B0(R)) to the equation

⇢
�kv = (v+)2

]

k

�1 in B0(R)
D↵v = 0 on @B0(R) for |↵|  k � 1

(2.143)

By a result of Boggio[7], the Green’s function for the Dirichlet problem above is
positive. Therefore, we get that v > 0 is a smooth classical solution to

⇢
�kv = v2

]

k

�1 in B0(R)
D↵v = 0 on @B0(R) for |↵|  k � 1

(2.144)

This is impossible by Pohozaev identity, see Lemma 3 of Ge-Wei-Zhou [18].
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2.8. Appendix: Regularity

Let f 2 L1(⌦M ). We say that u 2 H2
k,0(⌦M ) is a weak solution of the equation

Pu = f in ⌦M and D↵u = 0 on @⌦M for |↵|  k � 1, if for all ' 2 C1
c (⌦M )

(2.145)

Z

⌦
M

�k/2
g u�k/2

g ' dvg +
k�1X

↵=0

Z

⌦
M

Al(g)(rlu,rl') dvg =

Z

⌦
M

f' dvg

Now let the operator P be coercive on the space H2
k,0(⌦M ), i.e there exists a

constant C > 0 such that for all u 2 H2
k,0(⌦M )

(2.146)

Z

⌦
M

uP (u) dvg � C kuk2H2
k,0(⌦M

) .

We then have

Proposition 2.8.1 ((Hp
k -coercivity).

inf
u2Hp

k

(⌦
M

)\{0}

kPukp
kukHp

k

> 0(2.147)

Proof of Proposition 2.8.1: We proceed by contradiction. If not, then there exists
a sequence (ui) 2 C1

c (⌦M ) such that kuikHp

k

= 1 and lim
i!+1

kPuikp = 0. It follows

from classical estimates (see Agmon-Douglis-Nirenberg [1]) that

kuikHp

2k(⌦M

)  Cp

⇣
kPuikLp

+ kuikHp

k

⌘
= O(1)(2.148)

So there exists u0 2 Hp
2k,0(⌦M ) such that upto a subsequence ui * u0 weakly in

Hp
2k,0(⌦M ). Then ui ! u0 strongly in Hp

k,0(⌦M ) and so ku0kHp

k

= 1. Also u0

weakly solves the equation Pu0 = 0 in ⌦M and D↵u0 = 0 on @⌦M for |↵|  k � 1.
It follows from standard elliptic estimates (see Agmon-Douglis-Nirenberg [1]) that
u0 2 C1(⌦M ). Then, multiplying the equation by u0 and integrating over M ,
coercivity yields

C ku0k2H2
k

(⌦
M

) 
Z

M

u0Pu0 dvg = 0(2.149)

and hence u0 ⌘ 0, a contradiction since we have also obtained that ku0kHp

k

= 1.

This proves Proposition 2.8.1. 2

Proposition 2.8.2 (Existence and Uniqueness). Let the operator P k
g be co-

ercive. Then given any f 2 Lp(⌦M ), 1 < p < +1, there exists a unique weak
solution u 2 Hp

k,0(⌦M ) \Hp
2k(⌦M ) to

⇢
Pu = f in ⌦M

D↵u = 0 on @⌦M for |↵|  k � 1
(2.150)

The proof is classical and we only sketch it here. For p = 2, existence and
uniqueness follows from the Riesz representation theorem in Hilbert spaces. For
arbitrary p > 1, we approximate f in Lp by smooth compactly supported function
on ⌦M . For each of these smooth functions, there exists a solution to the pde with
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the approximation as a right-hand-side. The coercivity and the Agmon-Douglis-
Nirenberg estimates yield convergence of these solutions to a solution of the original
equation. Coercivity yields uniqueness.

We now proceed to prove our regularity results. The proof is based on ideas devel-
oped by Van der Vorst [35], and also employed by Djadli-Hebey-Ledoux [13] for
the case k = 2.

Theorem 2.5. Let (M, g) be a smooth, compact Riemannian manifold of di-
mension n and let k be a positve integer such that 2k < n. Let ⌦M be a smooth
domain in M and suppose u 2 H2

k,0(⌦M ) be a weak solution of the equation
⇢

Pu = f(x, u) in ⌦M

D↵u = 0 on @⌦M for |↵|  k � 1
(2.151)

where |f(x, u)|  C|u|(1 + |u|2]k�2) for some positive constant C, then

u 2 Lp(⌦M ) for all 1 < p < +1(2.152)

Proof of 2.5: We write f(x, u) = bu where |b|  C(1 + |u|2]k�2). Then b 2
Ln/2k(⌦M ) and u solves weakly the equation

⇢
Pu = bu in ⌦M

D↵u = 0 on @⌦M for |↵|  k � 1
(2.153)

Step 1: We claim that for any ✏ > 0 there exists q✏ 2 Ln/2k(⌦M ) and f✏ 2 L1(⌦M )
such that

bu = q✏u+ f✏, kq✏kLn/2k(⌦
M

) < ✏(2.154)

Now lim
i!+1

Z

{|u|�i}

|b|n/2k dvg = 0, so given any ✏ > 0 we can choose i0 such that

Z

{|u|�i0}

|b|n/2k dvg < ✏n/2k.

We define q✏ := �{|u|�i0}b and f✏ := (b � q✏)u = �{|u|<i0}b. Then, since |b| 
C(1 + |u|2]k�2), we have that kq✏kLn/2k(⌦

M

) < ✏ and f✏ 2 L1(M). This proves our
claim and ends Step 1.

We rewrite (2.153) as
⇢

Pu = q✏u+ f✏ in ⌦M

D↵u = 0 on @⌦M for |↵|  k � 1
(2.155)

Let H✏ be the operator defined formally as

H✏u = (P k
g )

�1(q✏u)(2.156)

Then Pu = q✏u+ f✏ becomes u� H✏u = (P k
g )

�1(f✏).

Step 2: we claim that for any s > 1, H✏ maps Ls(⌦M ) to Ls(⌦M ).
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We prove the claim. Let v 2 Ls(⌦M ), s � 2]k, then q✏v 2 Lŝ(⌦M ) where

ŝ =
ns

n+ 2ks
, and we have by Hölder inequality

kq✏vkLŝ(⌦
M

)  kq✏kLn/2k(⌦
M

) kvkLs(⌦
M

)(2.157)

Since kq✏kLn/2k(⌦
M

) < ✏, so we have

kq✏vkLŝ(⌦
M

)  ✏ kvkLs(⌦
M

)(2.158)

From (2.8.2) it follows that there exists a unique v✏ 2 H ŝ
2k(⌦M ) such that

⇢
Pv✏ = q✏v in ⌦M

D↵v✏ = 0 on @⌦M for |↵|  k � 1
(2.159)

weakly. Further we have for a positive constant C(s)

kv✏kH ŝ

2k(⌦M

)  C(s) kq✏vkLŝ(⌦
M

)(2.160)

So we obtained that

kv✏kH ŝ

2k(⌦M

)  C(s)✏ kvkLs(⌦
M

)(2.161)

By Sobolev embedding theorem H ŝ
2k(⌦M ) is continuously imbedded in Ls(⌦M ) so

v✏ 2 Ls(⌦M ) and we have

kv✏kLs(⌦
M

)  C(s)✏ kvkLs(⌦
M

)(2.162)

In other words, for any s � 2]k the operator H✏ acts from Ls(⌦M ) into Ls(⌦M ),
and its norm kH✏kLs!Ls

 C(s)✏. This proves the claim and ends Step 2.

Step 3: Now let s � 2]k be given, then for ✏ > 0 su�ciently small one has

kH✏kLs!Ls

 1

2
(2.163)

and so the operator I � H✏ : Ls(⌦M ) �! Ls(⌦M ) is invertible. We have

u� H✏u = (P k
g )

�1(f✏)(2.164)

Since u 2 L2]
k(⌦M ) and f✏ 2 L1(⌦M ), so u 2 Lp(⌦M ) for all 1 < p < +1.

This ends the proof of Theorem 2.5. 2

Proposition 2.8.3. Let (M, g) be a smooth, compact Riemannian manifold of
dimension n and let k be a positive integer such that 2k < n. Let f 2 C0,✓(⌦M )
a Hölder continuous function. Let ⌦M be a smooth domain in M and suppose
u 2 H2

k,0(⌦M ) be a weak solution of the equation
(

Pu = f |u|2]k�2 u or f(u+)2
]

k

�1 in ⌦M

D↵u = 0 on @⌦M for |↵|  k � 1
(2.165)

Then u 2 C2k(⌦M ), and is a classical solution of the above equation. Further if
u > 0 and f 2 C1(⌦M ), then u 2 C1(⌦M ).
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Proof of Proposition 2.8.3: It follows from (2.5) that u 2 Hp
2k(⌦M ) for all 1 <

p < +1. By Sobolev imbedding theorem this implies u 2 C2k�1,�(⌦M ) for all

0 < � < 1. |u|2]k�2 u, (u+)2
]

k

�1 2 C1(⌦M ). The Schauder estimates (here again, we
refer to Agmon-Douglis-Nirenberg [1]) then yield u 2 C2k,�(⌦M ) for all � 2 (0, 1),
and u is a classical solution.

If u > 0, then the right-hand-side is u2]
k

�1 and has the same regularity as u.
Therefore, iterating the Schauder estimates yields u 2 C1(⌦M ). This ends the
proof of Proposition 2.8.3. 2

2.9. Appendix: Local Comparison of the Riemannian norm with the
Euclidean norm

Let (M, g) be a smooth, compact Riemannian manifold of dimension n � 1. For
any point p 2 M there exists a local coordinate around p, '�1

p : ⌦ ⇢ Rn ! M ,
'(p) = 0, such that in these local coordinates one has for all indices i, j, k = 1, . . . , n

⇢
(1� ✏)�ij  gij(x)  (1 + ✏)�ij as bilinear forms.
|gij(x)� �ij |  ✏

Here we have identified TpM ⇠= Rn for any point p 2 M . For example, one can
take the exponetial map at p : expp, which is normal at p. We will let ◆g be the
injectivity radius of M . Using the above local comparison of the Riemannian metric
with the Euclidean metric one obtains

Lemma 2.9.1. Let (M, g) be a smooth, compact Riemannian manifold of di-
mension n and let k be positive integer such that 2k < n. We fix s � 1. Let
'�1
p : ⌦ ⇢ Rn ! M , '(p) = 0 be a local coordinate around p with the above men-

tioned properties. Then given any ✏0 > 0 there exists ⌧ 2 (0, ◆g), such that for any
point p 2 M , and u 2 C1

c (B0(⌧)) one has

(1� ✏0)

Z

Rn

(�k/2u)2 dx 
Z

M

(�k/2
g (u � 'p))

2 dvg  (1 + ✏0)

Z

Rn

(�k/2u)2 dx

(2.166)

and

(1� ✏0)

Z

Rn

|u|s dx 
Z

M

|u � 'p|s dvg  (1 + ✏0)

Z

Rn

|u|s dx(2.167)

Proof of Lemma 2.9.1: In terms of the coordinate map '�1
p : ⌦ ⇢ Rn ! M , for

any f 2 C2(M) we have

(2.168) �gf (x) = �gij(x)

✓
@2(f � '�1)

@xi@xj
(x)� �k

ij('(x))
@(f � '�1)

@xk
(x)

◆
.

Since the manifold M is compact, then given any ✏ > 0 there exists a ⌧ 2 (0, ◆g)
depending only on (M, g), such that for any point p 2 M and for any x 2 B0(⌧) ⇢
Rn one has for all indices i, j, k = 1, . . . , n

⇢
(1� ✏)�ij  gij(x)  (1 + ✏)�ij as bilinear forms.
|gij(x)� �ij |  ✏

Without loss of generality we can assume that ⌧ < 1. We let u 2 C1
c (Rn) be

such that supp(u) ⇢ B0(⌧). In the sequel, the constant C will denote any positive
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constant depending only on (M, g) and ⌧ : the same notation C may apply to
di↵erent constants from line to line, and even in the same line. All integrals below
are taken over B0(⌧), and we will therefore omit to write the domain for the sake
of clearness.

Case 1: k is even. We then write k = 2m, m � 1. Then calculating in terms of
local coordinates we obtain

(2.169)
���m

g (u � 'p)('
�1
p (x))��mu(x)

��  ✏
��r2mu(x)

��+ C
2m�1X

�=1

���r(2m��)u(x)
���

where Cg is a constant depending only on the metric g on M . Then we have
����
Z �

�m
g (u � 'p)('

�1
p (x))

�2
dx�

Z
(�mu)2 dx

����  22✏2
Z ��r2mu

��2 dx+

C
2m�1X

�=1

Z ���r(2m��)u
���
2
dx+ 2✏

Z ��r2mu
�� |�mu| dx+ C

2m�1X

�=1

Z
|�mu|

���r(2m��)u
��� dx

(2.170)

(2.171)

Now for any � such that �  2m � 1 we have r(2m��)u 2 D�,2(Rn) and by

Sobolev embedding theorem this implies that
��r(2m��)u

��2 2 L2]
�

/2(Rn). Applying
the Hölder inequality we obtain

(2.172)
2m�1X

�=1

Z ���r(2m��)u
���
2
dx  C

0

@
2m�1X

�=1

⌧2�

1

A
 Z ���r(2m��)u

���
2]
�

dx

!2/2]
�

And then the Sobolev inequality gives us

(2.173)

 Z ���r(2m��)u
���
2]
�

dx

!2/2]
�

 C

Z ��r2mu
��2 dx

Applying the integration by parts formula, we obtain

(2.174)

Z ��r2mu
��2 dx =

Z
(�mu)2 dx

So we have, since ⌧ < 1

2m�1X

|�|=1

Z ��r2m��u
��2 dx  C⌧

Z
(�mu)2 dx(2.175)

Therefore, we get that

����
Z �

�m
g (u � 'p)('

�1
p (x))

�2
dx�

Z
(�mu)2 dx

����  C (✏+ ⌧)

Z
(�mu)2 dx

(2.176)
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Now in these local coordinates one has

(1� ✏)n/2
Z �

�m
g (u � 'p)('

�1
p (x))

�2
dx 

Z

M

�
�m

g (u � 'p)
�2

dvg(2.177)

 (1 + ✏)n/2
Z �

�m
g (u � 'p)('

�1
p (x))

�2
dx(2.178)

So given an ✏0 > 0 small, we first choose ✏ small and then choose a su�ciently small
⌧ , so that for any u 2 C1

c (B0(⌧)) we have

����
Z �

�m
g (u � 'p)

�2
dvg �

Z
(�mu)2 dx

����  ✏0

Z
(�mu)2 dx(2.179)

So we have the lemma for k even.

Case 2: k is odd. We then write k = 2m + 1 with m � 0. Calculating in terms
of local coordinates, like in the even case, we obtain

�� |r(�m
g (u � 'p))|2('�1

p (x))� |r(�mu)|2(x)��  ✏|r(�mu)|2(x)(2.180)

+C✏
��r2m+1u

��2 (x) + C
2mX

�=1

���r(2m+1��)u
���
2
(x)(2.181)

+C✏
��r2m+1u

�� (x) |r(�mu)|(x) + C
2mX

�=1

���r(2m+1��)u
��� (x) |r(�mu)|(x)(2.182)

for all x 2 B0(⌧). Therefore����
Z

|r(�m
g (u � 'p))|2('�1

p (x)) dx�
Z

|r(�mu)|2(x) dx
����  ✏

Z
|r(�mu)|2 dx

+ C✏

Z ��r2m+1u
��2 dx+ C

2mX

�=1

Z ���r(2m+1��)u
���
2
dx

+ C✏

Z ��r2m+1u
�� |r(�mu)| dx+ C

2mX

�=1

Z ���r(2m+1��)u
��� |r(�mu)| dx

(2.183)

And then by calculations similar to the even case, along with the integration by
parts formula, we obtain

����
Z

|r(�m
g (u � 'p))|2('�1

p (x)) dx�
Z

|r(�mu)|2(x) dx
����  C̃g

�
✏+

p
⌧
� Z |r(�mu)|2 dx

(2.184)

Now given an ✏0 > 0 small, we first choose ✏ small and then choose a su�ciently
small ⌧ , so that for any u 2 C1

c (B0(⌧)) we have

������

Z

M

|r(�m
g (u � 'p))|2 dvg �

Z
|r(�mu)|2 dx

������
 ✏0

Z
|r(�mu)|2 dx(2.185)

Then one has the lemma for k odd. This ends the proof of Lemma 2.9.1. 2
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CHAPTER 3

Struwe’s decomposition for a Polyharmonic
Operator on a compact Riemannian manifold with

or without boundary

Abstract. Given a high-order elliptic operator on a compact manifold with
or without boundary, we perform the decomposition of Palais-Smale sequences
for a nonlinear problem as a sum of bubbles. This is a generalization of the
celebrated 1984 result of Struwe [16]. Unlike the case of second-order oper-
ators, bubbles close to the boundary might appear. Our result includes the
case of a smooth bounded domain of Rn.

3.1. Introduction

Let (M, g) be a smooth, compact Riemannian manifold of dimension n with or
without boundary. In the latter case we understand that M is a compact, oriented
submanifold of (M̃, g) which is itself a smooth, compact Riemannian manifold with-
out boundary and with the same metric g and dimension n. As one checks, this
includes smooth bounded domains of Rn. When the boundary @M 6= ;, we let
⌫ be its outward oriented normal vector in M̃ . Let k be a positive integer such
that 2k < n. We define the Sobolev space H2

k,0(M) as the completion of C1
c (M)

for the norm u 7! Pk
i=0 kriuk2. This norm is equivalent (see Robert [14]) to the

Hilbert norm kukH2
k

:=
⇣Pk

l=0

R
M
(�l/2

g u)2 dvg
⌘1/2

where �g := �divg(r) is the

Laplace-Beltrami operator and, for ↵ odd, �↵
g u�

↵
g v := (r�

↵�1
2

g u,r�
↵�1
2

g v)g for
all u, v 2 H2

k(M). For details we refer to Aubin [3] and Hebey [9].

We consider the functional

I(u) :=
1

2

Z

M

(�k/2
g u)2 dvg +

1

2

k�1X

l=0

Z

M

Al(rlu,rlu) dvg � 1

2]k

Z

M

|u|2]k dvg

where for all l 2 {0, . . . , k � 1}, Al is a smooth T 0
2l-tensor field on M and Al is

symmetric (that is Al(X,Y ) = Al(Y,X) for all T l
0-tensors X,Y on M). Here,

2]k := 2n
n�2k is the critical Sobolev exponent such that H2

k,0(M) ,! L2]
k(M) is

continuous, which makes the definition of I consistent for all u 2 H2
k,0(M). Critical

points u 2 H2
k,0(M) for I are weak solutions to the pde

⇢
Pu = |u|2]k�2u in M
@↵⌫ u = 0 on @M for |↵|  k � 1

(3.1)
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where for any u 2 C2k(M), we define

Pu := �k
gu+

k�1X

l=0

(�1)lrj
l

...j1
�
(Al)i1...il,j1...jlri1...ilu

�

and where we say that u 2 H2
k,0(M) is a weak solution to (3.1) if

Z

M

�k/2
g u,�k/2

g ' dvg +
k�1X

l=0

Z

M

Al(rlurl') dvg =

Z

M

|u|2]k�2 u' dvg

for all ' 2 H2
k,0(M). As shown by the regularity theorem in Mazumdar [13], a

weak solution u to (3.1) is indeed a strong solution, u 2 C2k(M).

Definition 3.1.1. Let (X, k·k) be a Banach space and F 2 C1(X). A sequence
(u↵) in X is said to be a Palais-Smale sequence for F if (F (u↵))↵ has a limit in R
when ↵! +1, while DF (u↵) ! 0 strongly in X 0 as ↵! +1.

In this chapter, we describe the lack of relative compactness of Palais-Smale se-

quences for I, which is due to the noncompact embedding H2
k,0(M) ,! L2]

k(M).

For ⌦ any open domain of Rn, we let D2
k(⌦) be the completion of C1

c (⌦) for the
norm u 7! k�k/2uk2. The limiting equations of (3.1) are

(3.2) �ku = |u|2]k�2 u in Rn, u 2 D2
k(Rn)

(3.3)

(
�ku = |u|2]k�2 u in Rn

�
@↵⌫ u = 0 on @Rn

�

)
, u 2 D2

k(Rn
�)

where� := �Eucl is the Laplacian on Rn (with the minus sign convention) endowed
with the Euclidean metric Eucl. Associated to the functional I is the limiting
functional

E(u) :=
1

2

Z

Rn

(�k/2u)2 dx� 1

2]k

Z

Rn

|u|2]k dx for all u 2 D2
k(Rn).

Our main theorem below shows that the lack of convergence to a solution of equation
(3.1) is described by a sum of Bubbles:

Theorem 3.1. Let (u↵) be a Palais-Smale sequence for the functional I on

the space H2
k,0(M). Then there exists d 2 N bubbles [(x(j)

↵ ), (r(j)↵ ), u(j)], j = 1, ..., d,

(see Definition 3.2.1 below) there exists u1 2 H2
k,0(M) a solution to (3.1) such

that, up to a subsequence,

u↵ = u1 +
dX

j=1

B
x
(j)
↵

,r
(j)
↵

(u(j)) + o(1) where lim
↵!+1

o(1) = 0 in H2
k,0(M)

and

I(u↵) = I(u1) +
dX

j=1

E(u(j)) + o(1) as ↵! +1.

In Section 3.2, Bubbles are defined up to a term going to 0 strongly, which is
relevent here. As one checks, given u 2 D2

k(Rn) a nontrivial weak solution to (3.2)
or (3.3), then multiplying the equation by u and integrating by parts yields

(3.4) E(u) � �] :=
k

n
K0(n, k)

�n/2k
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where K0(n, k) be the best constant of the embedding D2
k(Rn) ,! L2]

k(Rn), that is

(3.5) K0(n, k)
�1 = inf

u2D2
k

(Rn)\{0}

R
Rn

(�k/2u)2 dx
⇣R

Rn

|u|2]k dx
⌘ 2

2
]

k

When the Palais-Smale sequence is nonnegative, the bubbles are positive and cor-
respond to positive solutions to (3.2). As shown in Lions [12], Swanson [17], Ge-
Wei-Zhou [7], these solutions are exactly the extremals for (3.5) and are of the
form

u = Ua,� := ↵n,k

✓
�

1 + �2| ·�a|2
◆n�2k

2

a 2 Rn,� > 0(3.6)

where ↵n,k > 0 is explicit. We then get the following:

Theorem 3.2. Let (u↵) be a Palais-Smale sequence for the functional I on
the space H2

k,0(M). We assume that u↵ � 0 for all ↵ 2 N. Then there exists

u1 2 H2
k,0(M) a solution to (3.1), there exists d 2 N sequences : (x(1)

↵ ), . . . , (x(d)
↵ ) 2

M , (r(1)↵ ), . . . , (r(d)↵ ) 2 (0,+1) such that r(j)↵ ! 0 and r(j)↵ = o(d(x(j)
↵ , @M)) as

↵! +1 for all j = 1, ..., d, and up to a subsequence,

u↵ = u1 +
dX

j=1

⌘
⇣
(r̃(j)↵ )�1exp�1

x
(j)
↵

(·)
⌘
↵n,k

 
r(j)↵

(r(j)↵ )2 + dg(·, x(j)
↵ )2

!n�2k
2

+ o(1)

where lim↵!+1 o(1) = 0 in H2
k,0(M), and ⌘ and (r̃(j)↵ )0s are as in (3.8). Moreover,

I(u↵) = I(u1) + d�] + o(1) as ↵! +1
where �] is as in (3.4).

When k = 1 and M is a smooth bounded domain of Rn, Theorem 3.1 is the pio-
neering result of Struwe [16]. There have been several extensions. Without being
exhaustive, we refer to Hebey-Robert [11] for k = 2 and manifolds without bound-
ary, Saintier [15] for the p�Laplace operator, El-Hamidi-Vétois [5] for anisotropic
operators and Almaraz [1] for nonlinear boundary conditions. When the manifold
is the entire flat space Rn, the decomposition is in the monograph by Fieseler-
Tintarev [18]. Another possible description is in the sense of measures as in Lions
[12]: a general result of this flavour for high order elliptic operators on manifolds
is in Mazumdar [13].

Palais-Smale sequence are produced via critical point techniques, like the Mountain-
Pass Lemma of Ambrosetti-Rabinowitz [2] or other topological methods (see for
instance the monograph Ghoussoub [8] and the references therein). Concerning
higher-order problems, we refer to Bartsch-Weth-Willem [4], Ge-Wei-Zhou [7],
Mazumdar [13], the general monograph Gazzola-Grunau-Sweers [6] and the ref-
erences therein. Theorem 3.1 is used by the author in [13] to get Coron-type
solutions to equation (3.1).

Acknowledgements. I would like to express my deep gratitude to Professor
Frédéric Robert and Professor Dong Ye, my thesis supervisors, for their patient
guidance, enthusiastic encouragement and useful critiques of this work.
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3.2. Definition of Bubbles

In the spirit of the exponential map, we first cook up a chart around any boundary
point. We fix x0 2 @M . Since M is a smooth submanifold of M̃ , there exist ⌦ an
open subset of M̃ with x0 2 ⌦, there exists U ⇢ Rn open with 0 2 U , such that for
any x 2 ⌦ \ @M there exists Tx 2 C1(U, M̃) having the following properties.

(3.7)

8
>>>>>>>>>><

>>>>>>>>>>:

• Tx(0) = x
• Tx is a smooth di↵eomorphism onto its image Tx(U).
• Tx (U \ {x1 < 0}) = Tx(U) \M
• Tx (U \ {x1 = 0}) = Tx(U) \ @M
• (x, z) 7! Tx(z) is smooth from ⌦⇥ U to M̃
• dTx(0) : Rn ! TxM is an isometry
• dTx(0)[e1] = ⌫x where ⌫x is the outer unit normal vector to @M

at the point x.

This map is defined uniformly with respect to x in a neighborhood ⌦ of a fixed point
x0 2 @M . By a standard abuse of notation, we will always consider x 7! Tx without
any reference to ⌦ or x0: this will make sense in the sequel since the relevant points
will always be in the neighborhood of a fixed point.

Definition 3.2.1. A “Bubble” is a triplet [(x↵), (r↵), u] where x↵ 2 M is a
convergent sequence, r↵ > 0 for all ↵ 2 N with lim

↵!+1
r↵ = 0 and

either

⇢
x↵ 2 M, lim

↵!+1

d(x↵, @M)

r↵
= +1 and u 2 D2

k(Rn) satisfies (3.2)

�

or
�
x↵ 2 @M and u 2 D2

k(Rn
�) satisfies (3.3)

 

If x↵ 2 M , we let r̃↵ > 0 be such that

(3.8) lim
↵!+1

r̃↵ = r̃1 2
"
0,

ig(M̃)

2

!
, lim

↵!+1

r↵
r̃↵

= 0 and r̃↵ <
dg(x↵, @M)

2

and we define

Bx
↵

,r
↵

(u) := ⌘

✓
exp�1

x
↵

(x)

r̃↵

◆
r
�n�2k

2
↵ u

✓
exp�1

x
↵

(x)

r↵

◆

where ⌘ 2 C1
c (B0(ig(M̃))) is identically 1 in a neighborhood of 0. Here, the expo-

nential map is taken on the ambient manifold (M̃, g).

If x↵ 2 @M , we let x0 := lim↵!+1 x↵, and we define

Bx
↵

,r
↵

(u) := ⌘
�T �1

x
↵

(x)
�
r
�n�2k

2
↵ u

✓T �1
x
↵

(x)

r↵

◆

where Tx is as in (3.7), ⌦ is a neighborhood of x0 2 @M and ⌘ 2 C1
c (U) is

identically 1 in a neighborhood of 0.

Beside [(x↵), (r↵), u], the definition of a bubble depends on the choice of the cut-o↵
function ⌘, the radius r̃↵ and the chart Tx. However, as shown in the proposition
below, after quotienting by sequences going to 0, the class of a Bubble is independent
of these later parameters.
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Proposition 3.2.1. The definition of Bubbles depend only on [(x↵), (r↵), u],
up to a sequence going to 0 strongly in H2

k,0(M).

Proof of Proposition 3.2.1. We first assume that u 2 D2
k(Rn) satisfies (3.2) and

that

(3.9) lim
↵!+1

dg(x↵, @M)

r↵
= +1.

For i = 1, 2, we set the bubbles Bi
↵ := ⌘i

�
(r̃i↵)

�1exp�1
x
↵

(·)� r�
n�2k

2
↵ u

�
r�1
↵ exp�1

x
↵

(·)�,
where ⌘i 2 C1

c (B0(2ai)), ⌘i ⌘ 1 in B0(ai) with 0 < 2ai  ◆g(M̃); r̃i↵ > 0 are
as in (3.8). We let rmax

↵ = max{a1r̃1↵, a2r̃2↵} and rmin
↵ = min{a1r̃1↵, a2r̃2↵}, and let

✏max
↵ = r↵/rmax

↵ and ✏min
↵ = r↵/rmin

↵ . Then lim↵!0 ✏max
↵ = 0 and lim↵!0 ✏min

↵ = 0.
The comparison lemma 9.1 of [13] yields C > 0 such that for any R > 0 and ↵
large

kX

l=0

k�l/2
g

�
B1

↵ �B2
↵

� k22 
kX

l=0

Z

B2rmax

↵

(x
↵

)\B
r

min

↵

(x
↵

)

⇣
�l/2

g

�
B1

↵ �B2
↵

�⌘2
dvg


X

i=1,2

kX

l=0

Z

M\B
Rr

↵

(x
↵

)

⇣
�l/2

g

�
Bi

x
↵

,r
↵

(u)
�⌘2

dvg.

Therefore, using (3.33), we get that B1
↵ �B2

↵ = o(1) in H2
k(M) as ↵! +1.

Now we consider the case of a boundary bubble, that is x↵ 2 @M and and u 2
D2

k(Rn
�) satisfies (3.3). For i = 1, 2, we setBi

↵ := ⌘i
⇣
T 1�1

x
↵

(·)
⌘
r
�n�2k

2
↵ u

⇣
r�1
↵ T i�1

x
↵

(·)
⌘

where T x, i = 1, 2, are as in (3.7), U is a neighborhood of x0 2 @M and ⌘1, ⌘2 2
C1

c (U) are identically 1 in a neighborhood of 0. One has

kX

l=0

Z

M

⇣
�l/2

g

�
B1

↵ �B2
↵

�⌘2
dvg 

kX

l=0

Z

D
↵

(R)\M

⇣
�l/2

g

�
B1

↵ �B2
↵

�⌘2
dvg +

kX

l=0

Z

M\D
↵

(R)

⇣
�l/2

g

�
B1

↵ �B2
↵

�⌘2
dvg

where D↵(R) := T 1
x
↵

(B0(r↵R)) [ T 2
x
↵

(B0(r↵R)) It follows as in the comparison
Lemma 9.1 of [13] that there exists C > 0 such that for ↵ large

kX

l=0

Z

D
↵

(R)\M

⇣
�l/2

g

�
B1

↵ �B2
↵

�⌘2
dvg 

C
kX

l=0

Z

(B0(r↵R)[��1
↵

(B0(r↵R)))\Rn

�

⇣
�l/2

��
B1

↵ � T 1
x
↵

�� �
B2

↵ � T 1
x
↵

��⌘2
dx 

C
kX

l=0

Z

B0(R)\Rn

�

h
�l/2 (⌘a(r↵·)u)��l/2

�
⌘b (�↵(r↵·))u

�
r�1
↵ �↵(r↵·)

��i2
dx = o(1)

where �↵ := T 2
x
↵

�1 � T 1
x
↵

and d(�↵)0 = Id. Similarly to the case (3.9), we get that

lim
R!+1

lim
↵!+1

kX

l=0

Z

M\D
↵

(R)

⇣
�l/2

g

�
B1

↵ �B2
↵

�⌘2
dvg = 0.
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This completes the proof of Proposition 3.2.1. ⇤

3.3. Preliminary analysis

The proof of Theorem 3.1 goes through four steps. All results are up to a
subsequence. We let (u↵)↵ 2 H2

k,0(M) be a Palais-Smale sequence for I.

Step 1: We claim that (u↵)↵ is bounded in H2
k,0(M).

Proof of the claim: Since (u↵) is a Palais-Smale sequence, we have that

hDI(u↵), u↵i =

Z

M

(�k/2
g u↵)

2 dvg +
k�1X

↵=0

Z

M

Al(rlu↵,rlu↵) dvg

�
Z

M

|u↵|2
]

k dvg = o
⇣
ku↵kH2

k

⌘

Therefore

(3.10)

Z

M

|u↵|2
]

k dvg =
n

k
I(u↵) + o

⇣
ku↵kH2

k

⌘
 C + o

⇣
ku↵kH2

k

⌘

Since (I(u↵))↵ is bounded, then putting together these equalities yields

ku↵k2H2
k

 C + C ku↵k2H2
k�1

+ C

Z

M

|u↵|2
]

k dvg

Now since the embedding of H2
k,0(M) in H2

0,k�1(M) is compact, then for any " > 0

there exists a B" > 0 such that kuk2H2
k�1

 " kuk2H2
k

+ B" kuk22]
k

for all u 2 H2
k(M).

Therefore, taking " > 0 small enough, we get that

ku↵k2H2
k

 C + C

Z

M

|u↵|2
]

k dvg

Then using (3.10) we get that ku↵k2H2
k

 C +C ku↵kH2
k

for all ↵, and therefore the

sequence (u↵) is bounded in H2
k,0(M). This proves the claim. ⇤

Since (u↵) is bounded in H2
k,0(M), there exists u1 2 H2

k,0(M) such that
8
><

>:

u↵ * u1 weakly in H2
k,0(M) and L2]

k(M),

u↵ ! u1 strongly in H2
l,0(M) and in Lq(M) for l < k, q < 2]k,

u↵(x) ! u1(x) a.e in M

(3.11)

We define v↵ := u↵ � u1.

Step 2: We claim that

(1) DI(u1) = 0
(2) (v↵) is a Palais-Smale sequence for the functional J on the space H2

k,0(M),
(3) J(v↵) = I(u↵)� I(u1) + o(1) as ↵! +1.

where

J(u) :=
1

2

Z

M

(�k/2
g u)2 dvg � 1

2]k

Z

M

|u|2]k dvg for u 2 H2
k,0(M)

Proof of the claim: We fix ' 2 H2
k,0(M). We have that
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hDI(u↵),'i =
Z

M

�k/2
g u↵�

k/2
g ' dvg +

k�1X

↵=0

Z

M

Al(g)(rlu↵,rl')

�
Z

M

|u↵|2
]

k

�2 u↵' dvg = o(1)(3.12)

The following classical integration Lemma will be often used in the sequel (see
Lemma 6.2.7 in Hebey [10] for a proof):

Lemma 3.3.1. Let (M, g) be a Riemannian manifold. If (f↵) is a bounded
sequence in Lp(M), 1 < p < +1, such that f↵ ! f a.e in M , then f 2 Lp(M)
and f↵ * f weakly in Lp(M).

Since (|u↵|2
]

k

�2 u↵)↵ is bounded in L

2
]

k

2
]

k

�1 and converges a.e., Lemma 3.3.1 yields

(3.13)

Z

M

|u↵|2
]

k

�2 u↵' dvg =

Z

M

|u1|2]k�2 u1' dvg + o(1)

Therefore, the weak convergence of (u↵) to u1, (3.12) and (3.13) yield that u1 is
a weak solution to (3.1). This proves point (1) of Step 2.

We now estimate I(u↵). From (3.11) we have
Z

M

(�k/2
g u↵)

2 dvg �
Z

M

(�k/2
g u1)2 dvg =

Z

M

(�k/2
g v↵)

2 dvg + o(1),

k�1X

l=0

Z

M

Al(rlu↵,rlu↵) dvg =
k�1X

l=0

Z

M

Al(rlu1,rlu1) dvg + o(1)

The following two inequalities will be of constant use in the sequel: for any 1 < p <
+1, there exists C > 0 such that

(3.14) | |a+ b|p � |a|p � |b|p |  C
�|a|p�1|b|+ |b|p�1|a|�

(3.15) | |a+ b|p(a+ b)� |a|pa� |b|pb |  C (|a|p|b|+ |b|p|a|)
for all a, b 2 R. It then follows from (3.14) that

���|u↵|2
]

k � |u1|2]k � |v↵|2
]

k

���  C
⇣
|v↵|2

]

k

�1|u1|+ |u1|2]k�1|v↵|
⌘
,

and then using Lemma 3.3.1, we get that
Z

M

|u↵|2
]

k dvg �
Z

M

|u1|2]k dvg =

Z

M

|v↵|2
]

k dvg + o(1)

Hence I(u↵)� I(u1) = J(v↵)+ o(1) as ↵! +1, which proves point (3) of Step 2.

Next we show the sequence (v↵) is a Palais-Smale sequence for the functional J on
H2

k,0(M). Let ' 2 H2
k,0(M), we have

(3.16) hDJ(v↵),'i = hDI(u↵),'i � hDI(u1),'i+
Z

M

�↵' dvg + o(k'kH2
k

)

where
�↵ := |v↵ + u1|2]k�2 (v↵ + u1)� |u1|2]k�2 u1 � |v↵|2

]

k

�2 v↵
Inequality (3.15) and Hölder’s inequality yield

(3.17)

����
Z

M

�↵' dvg

����  C

0

@
���|v↵|2

]

k

�2u1

��� 2
]

k

2
]

k

�1

+
���|u1|2]k�2v↵

��� 2
]

k

2
]

k

�1

1

A k'k2]
k
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Since v↵ * 0 in L2]
k(M), Lemma 3.3.1 yields

���|v↵|2
]

k

�2u1

��� 2
]

k

2
]

k

�1

+
���|u1|2]k�2v↵

��� 2
]

k

2
]

k

�1

= o(1)

Since (u↵) is a Palais-Smale for I, then (3.16), (3.17) and the continuous embedding

H2
k,0(M) ,! L2]

k(M) yields hDJ(v↵),'i = o(k'kH2
k

) as ↵ ! +1 uniformly wrt

' 2 H2
k,0(M). This proves the claim and ends Step 2. ⇤

The next lemma adresses the compactness of a Palais-Smale sequence for small
energy. It will be generalized to the case of small local energy in Proposition 3.4.1.

Step 3: Let (v↵) be a Palais-Smale sequence for J on H2
k,0(M). We assume that

v↵ * 0 weakly in H2
k,0(M), and that J(v↵) ! � with � < �], where �] is as in

(3.4). We claim that v↵ ! 0 strongly in H2
k,0(M).

Proof of the claim: Since (v↵) is bounded and hDJ(v↵), v↵i = o(kv↵kH2
k

), we get
that

(3.18) J(v↵) =
k

n

Z

M

(�k/2
g v↵)

2 dvg + o(1) =
k

n

Z

M

|v↵|2
]

k dvg + o(1) = � + o(1).

As a consequence, � � 0. It follows from Mazumdar [13] that for any " > 0 there
exists B" > 0 such that

(3.19) kuk22]
k

 (K0(n, k) + ")

Z

M̃

(�k/2
g u)2 dvg +B" kuk2H2

k�1

for all u 2 H2
k(M̃). Applying this inequality to v↵, the strong convergence to 0 in

H2
k�1 and (3.18) yield

⇣n
k
�
⌘2/2]

k  (K0(n, k) + ")
n

k
�

Letting " ! 0 and using 0  � < �], we get that � = 0, and then (3.18) yields
v↵ ! 0 strongly in H2

k,0(M). This proves the claim and ends Step 3. ⇤
Step 4: Proof of Theorem 3.1. Let (u↵) be a Palais-Smale sequence for the
functional I on the space H2

k,0(M). By substracting the weak limit u1, we get
a Palais-Smale sequence (v↵) for the functional J with energy J(v↵) = I(u↵) �
I(u1)+o(1) as ↵! +1. If v↵ ! 0 strongly in H2

k,0(M), then we end the process.

If not, we apply Lemma 3.4.1 to substract a bubble modeled on v 2 D2
k(Rn) \ {0}

and we get a new Palais-Smale sequence for J , but with the energy decreased by
E(v). If the resulting sequence goes strongly to 0, we stop the process, if not,
we iterate it again. This process must stop since the energy E(v) � �] and after
finitely many steps, the energy goes below the critical threshold �] and then the
convergence is strong by Step 3. This proves Theorem 3.1. ⇤
The rest of the chapter is devoted to the proof of Lemma 3.4.1.

3.4. Extraction of a Bubble

In the sequel, for any (M, g) as in the introduction, we let H2
k(M) be the

completion of {u 2 C1(M) : kukH2
k

< +1} for the norm k · kH2
k

. The space

H2
k,0(M) is then a closed subspace of H2

k(M). The following lemma is the main
ingredient in the proof of Theorem 3.1
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Lemma 3.4.1. Let (v↵) be a Palais-Smale sequence for the functional J on
H2

k,0(M) such that v↵ * 0 weakly in H2
k,0(M) but not strongly. Then there exists

a bubble (Bx
↵

,r
↵

(v)) such that upto a subsequence, the following holds:

• w↵ := v↵ �Bx
↵

,r
↵

(v) is a Palais-Smale sequence for J ,
• J(w↵) = J(v↵)� E(v) + o(1) as ↵! +1.

The proof of this lemma goes through 10 steps.

Step 1: We prove a strong convergence Lemma for small energies. This is a
localized version of Step 3 of Section 3.3.

Proposition 3.4.1. Let (N, g1) be a Riemannian manifold with positive in-
jectivity radius.

• Let (gi)i be metrics on N such that gi ! g1 in Cp
loc as i ! +1 for all p.

• Let (Pi)i be a family of operators on C1(N) such that

Pi := �k
g
i

+
k�1X

l=0

(�1)lri1...il
�
(Ai

l)i1...ilj1...jlrj1...jl
�

with families of symmetric tensors (Ai
l) ! Al in Cp

loc as i ! +1 for all p.

• We fix ⌦ ⇢ N an open smooth domain, and we define

(3.20) Ji(u) :=
1

2

Z

⌦
uPiu dvg

i

� 1

2]k

Z

⌦
|u|2]k dvg

i

for u 2 H2
k(⌦),

such that Ji is C1. Here, the background metric is g1.

• We let (ui) 2 H2
k,0(⌦) and u1 2 H2

k,0(⌦) be such that ui * u1 weakly in H2
k,0(⌦)

as i ! +1.

• We assume that there exist a compact K ⇢ N such that

lim
i!+1

sup
u2H2

k,0(⌦),Supp '⇢K

hDJi(ui),'i
k'kH2

k

(⌦)
= 0

• We assume that there exists K1 > 0 and C � 0 such that
(3.21)

✓Z

N

|u|2]k dvg1
◆ 2

2
]

k  K1

Z

N

(�k/2
g1 u)2 dvg1 + Ckuk2H2

k�1
for all u 2 C1

c (N).

We fix x0 2 ⌦ and � 2 (0, ig1(N)/2). We assume that

(3.22)

8
>><

>>:

Bx0(2�) ⇢ K (the ball is wrt g1),
Z

B
x0 (2�)\⌦

|ui|2
]

k dvg
i


✓

1

2K1

◆ 2
]

k

2
]

k

�2

for all i 2 N.

Then ui ! u1 strongly in H2
k(Bx0(�) \ ⌦).

Proof of Proposition 3.4.1: Up to extracting a subsequence, we assume that ui !
u1 strongly in H2

k�1(!) as i ! +1 for ! ⇢ ⌦ relatively compact and ui(x) !
u1(x) as i ! +1 for a.e. x 2 ⌦. Let ⌘ 2 C1(N) such that ⌘(x) = 1 for
x 2 Bx0(�) and ⌘(x) = 0 for x 2 N \Bx0(2�). Since ⌘ has compact support, we get
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that ⌘2(ui � u1) 2 H2
k,0(⌦) is uniformly bounded in H2

k,0(⌦). Since Bx0(2�) ⇢ K,
it then follows from hypothesis (3.20) that

hDJi(ui), ⌘
2(ui � u1)i = o(1) as i ! +1.

Since ⌘2(ui � u1) ! 0 strongly in H2
k�1(⌦), we then get that

(3.23)

Z

⌦
�k/2

g
i

ui�
k/2
g
i

(⌘2(ui � u1)) dvg
i

=

Z

⌦
|ui|2

]

k

�2ui⌘
2(ui � u1) dvg

i

+ o(1)

as i ! +1. The weak convergence of ui to u1 and the strong convergence of gi
to g1 on compact sets yields
(3.24)Z

⌦
�k/2

g
i

ui�
k/2
g
i

(⌘2(ui�u1)) dvg
i

=

Z

⌦
�k/2

g
i

(ui�u1)�k/2
g
i

(⌘2(ui�u1)) dvg
i

+o(1)

as i ! +1. As one checks, for any ' 2 H2
k(⌦), we have that �k/2

g
i

'�k/2
g
i

(⌘2') =⇣
�k/2

g
i

(⌘')
⌘2

+
P

p<k,lk rp' ? rl', where A ? B denotes a linear combination

of bilinear forms in A and B. Therefore, using again the strong convergence of
⌘2(ui � u1) to 0 in H2

k�1, we get that

(3.25)

Z

⌦
�k/2

g
i

ui�
k/2
g
i

(⌘2(ui � u1)) dvg
i

=

Z

⌦

⇣
�k/2

g
i

(⌘(ui � u1))
⌘2

dvg
i

+ o(1)

as i ! +1. Moreover, since |ui|2]k�2⌘2(ui�u1) is uniformly bounded in L2]
k

/(2]
k

�1)

and goes to 0 almost everywhere as i ! +1, then it goes weakly to 0 in L2]
k

/(2]
k

�1),

and then
R
⌦ |ui|2]k�2⌘2(ui�u1)u1 dvg

i

! 0 as i ! +1. Therefore, plugging (3.24)
and (3.25) into (3.23), we get that

Z

⌦

⇣
�k/2

g
i

(⌘(ui � u1))
⌘2

dvg
i

=

Z

⌦
|ui|2

]

k

�2(⌘(ui � u1))2 dvg
i

+ o(1)

as i ! +1. Since gi ! g1 as i ! +1 in Cp locally on compact sets and ⌘(ui�u1)
is uniformly bounded in H2

k(⌦), we get that
Z

⌦

⇣
�k/2

g1 (⌘(ui � u1))
⌘2

dvg1 =

Z

⌦
|ui|2

]

k

�2(⌘(ui � u1))2 dvg1 + o(1)

as i ! +1. Hölder’s inequality, the Sobolev inequality (3.21), the convergence of
(gi), the strong convergence in H2

k�1 and (3.22) then yields
Z

⌦

⇣
�k/2

g1 (⌘(ui � u1))
⌘2

dvg1


 Z

B
x0 (2�)\⌦

|ui|2
]

k dvg1

! 2
]

k

�2

2
]

k

✓Z

N

|⌘(ui � u1)|2]k dvg1
◆ 2

2
]

k + o(1)

 1

2K1

✓
K1

Z

N

⇣
�k/2

g1 (⌘(ui � u1))
⌘2

dvg1 + Ck⌘(ui � u1)k2H2
k�1

◆
+ o(1)


 Z

B
x0 (2�)\⌦

|ui|2
]

k dvg
i

! 2
]

k

�2

2
]

k

K1

Z

⌦

⇣
�k/2

g1 (⌘(ui � u1))
⌘2

dvg1 + o(1)

as i ! +1. Therefore, we get that k�k/2
g1 (⌘(ui � u1))k2 ! 0 as i ! +1.

Since ⌘(ui � u1) ! 0 strongly in H2
k�1 and ⌘ has compact support, we get that



3.4. EXTRACTION OF A BUBBLE 67

⌘(ui�u1) ! 0 strongly in H2
k(⌦), and therefore ui ! u1 in H2

k(Bx0(�)\⌦). Note
that this is up to a subsequence. Indeed, by uniqueness, the convergence holds for
the initial sequence (ui). This proves Proposition 3.4.1. 2

Step 2: Since hDJ(v↵), v↵i = o(1), one has

J(v↵) =
k

n

Z

M

|v↵|2
]

k dvg + o(1) = � + o(1) as ↵! +1

where � := lim↵!+1 J(v↵). By Step 3 of Section 3.3, � � �]. Therefore, since M
is compact, for any r0 > 0, there exists y0 2 M and �0 > 0 such that

Z

B
y0 (r0)\M

|v↵|2
]

k dvg � �0

For any r > 0, we set

(3.26) µ↵(r) := max
x2M

Z

B
x

(r)\M

|v↵|2
]

k dvg,

the Levy concentration function. In particular, µ↵(r0) � �0 for all ↵. We fix

0 < � < ✏0 := min

(
�0,

1

(2K0(n, k))2
]

k

/(2]
k

�2)

)

where K0(n, k) is the best constant in the Euclidean Sobolev inequality (3.5). Since
µ↵(0) = 0, there exists (r↵)↵ 2 (0, r0) and (x↵)↵ 2 M such that:

(3.27) � = µ↵(r↵) =

Z

B
x

↵

(r
↵

)\M

|v↵|2
]

k dvg

Step 3: We claim that lim↵!+1 r↵ = 0.

Proof of the claim. We argue by contradiction. If (r↵) does not go to 0 up to a
subsequence, we get that there exists � 2 (0, ig(M̃)/2) such that for all x 2 M ,

we have that
R
B

x

(2�)\M
|v↵|2]k dvg  � for all ↵. We apply Proposition 3.4.1 with

(N, g1) = (M̃, g), ⌦ = M , P↵ = P , g↵ = g, J↵ = J , and the Sobolev inequality
(3.19) of [13], and we get v↵ ! 0 as ↵ ! +1 in H2

k(M \ Bx(�)) for all x 2 M .
With a finite covering, we get that v↵ ! 0 as ↵ ! +1 strongly in H2

k,0(M),
contradicting our initial hypothesis. This proves the claim and ends Step 3. ⇤
First assume that

(3.28) lim
↵!+1

d(x↵, @M)

r↵
= +1.

We define

ṽ↵(x) := r
n�2k

2
↵ u↵(expx

↵

(r↵x)) for |x| < ig(M̃)

r↵
and |x| < d(x↵, @M)

r↵

Step 4: Suppose that (3.28) holds. We claim that there exists v 2 D2
k(Rn) such

that for any ⌘ 2 C1
c (Rn), we have that

⌘ṽ↵ * ⌘v weakly in D2
k(Rn) as k ! +1.
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Proof of the claim. Fix ⌘ 2 C1
c (Rn), and let R0 > 0 be such that Supp ⌘ ⇢ B0(R0).

We define

⌘↵(x) := ⌘

✓
exp�1

x
↵

(x)

r↵

◆
for x 2 Bx

↵

(R0r↵), and ⌘↵(x) := 0 outside.

Up to a subsequence, there exists x0 2 M̃ and ⌧ > 0 such that Bx
↵

(R0r↵) ⇢
Bx0(⌧) ⇢ M̃ . It then follows from the comparison Lemma 9.1 of Mazumdar [13]
that there exists C > 0 such that

Z

B0(R0r↵)

⇣
�k/2[(⌘↵v↵) � expx

↵

]
⌘2

dx  C

Z

B
x

↵

(R0r↵)

⇣
�k/2

g (⌘↵v↵)
⌘2

dvg

for all ↵. With a change of variable, rough estimates of the di↵erential terms and
Hölder’s inequality, we then get

Z

B0(R0)

⇣
�k/2(⌘ṽ↵)

⌘2
dx  C

kX

l=0

Z

B
x

↵

(R0r↵)
|rlu↵|2g|rk�l⌘↵|2g dvg

 C
kX

l=0

Z

B
x

↵

(R0r↵)
r2(l�k)
↵ |rlv↵|2g dvg  C

kX

l=0

krlv↵k2 2n
n�2(k�l)

(3.29)

It follows from Sobolev’s embedding theorem that H2
k�l(M) ⇢ L

2n
n�2(k�l) (M) for all

l = 0, ..., k and that this embedding is continuous. Since (v↵)↵ is bounded in H2
k ,

then (rlv↵)↵ is uniformly bounded in H2
k�l (with tensorial values), and then there

exists C > 0 such that

(3.30) krlv↵k 2n
n�2(k�l)

 Ckv↵kH2
k

 C 0

for all ↵ > 0 and l = 0, ..., k. It then follows from (3.29) that (⌘ṽ↵)↵ is bounded
in D2

k(Rn). Therefore, up to a subsequence, there exists v⌘ 2 D2
k(Rn) such that

⌘ṽ↵ * v⌘ weakly in D2
k(Rn) as ↵! +1. A classical diagonal argument then yields

the existence v 2 H2
k,loc(Rn) such that ⌘ṽ↵ * ⌘v weakly in D2

k(Rn) as ↵ ! +1.
We fix R > 0. For any R0 > R, a change of variables and (3.30) yields

Z

B0(R)
|rl⌘R0 ṽ↵|

2n
n�2(k�l)
g
↵

dvg
↵


Z

B
x

↵

(R0r↵)
|rlv↵|

2n
n�2(k�l)
g dvg  C

where g↵ := exp?x
↵

g(r↵·). Using weak convergence and convexity, letting ↵! +1
and then R ! +1 yields |rlv| 2 L

2n
n�2(k�l) (Rn). As one checks, we then have

that the sequence (⌘Rv)R is a Cauchy sequence in D2
k(Rn), and then we get that

v 2 D2
k(Rn). This ends the proof of the claim, and ends Step 4. ⇤

Step 5: We assume that (3.28) holds. We let v 2 D2
k(Rn) as in Claim 3. We

claim that v 6⌘ 0 is a weak solution to �kv = |v|2]k�2v in D2
k(Rn).

Proof of the claim. We fix R > 0 and we apply Proposition 3.4.1 with (N, g1) :=
(Rn,Eucl) and ⌦ := Rn. As above, we define a family of smooth metrics (g↵)↵
such that g↵(x) := exp?x

↵

g(r↵x) for x 2 B0(3R), g↵(x) = Eucl for x 2 Rn \B0(4R),
and g↵ ! Eucl in Cp

loc(Rn) as ↵ ! +1 for all p. Let ' 2 C1
c (Rn) be such that

Supp ' ⇢ B0(R). We define

'↵(x) := r
�n�2k

2
↵ '

✓
exp�1

x
↵

(x)

r↵

◆
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for all x 2 M . As one checks, '↵ is well-defined and has support in Bx
↵

(Rr↵).
Moreover, using the comparison Lemma 9.1 in Mazumdar [13] and arguing as in
Step 4, we get that k'↵kH2

k,0(M)  C(R)k'kH2
k,0(Rn) for all ↵ > 0. Since (u↵) is a

Palais-Smale sequence, we have that

hDJ(v↵),'↵i = o(k'↵kH2
k,0

) = o(k'kH2
k,0(Rn))

as ↵ ! +1 uniformly for all ' 2 C1
c (Rn) such that Supp ' ⇢ B0(R). With a

change of variable, we get hDJ(v↵),'↵i = hDJ↵(⌘Rṽ↵),'i where

J↵(u) :=
1

2

Z

Rn

(�k/2
g
↵

u)2 dvg
↵

� 1

2]k

Z

Rn

|u|2]k dvg
↵

for all u 2 H2
k(Rn). Therefore, hDJ↵(⌘Rṽ↵),'i = o(k'kH2

k,0(Rn)) as ↵ ! +1
uniformly for all ' 2 C1

c (Rn) such that Supp ' ⇢ BR(0).

We fix x0 2 Rn such that Bx0(1/2) ⇢ B0(R). A change of variable yields
Z

B
x0 (1/2)\B0(2R)

|⌘Rṽ↵|2
]

k dvg
↵

=

Z

exp
x

↵

(r
↵

B
x0 (1/2))

|u↵|2
]

k dvg.

For ↵ > 0 large enough, we have that expx
↵

(r↵Bx0(1/2)) ⇢ Bexp
x

↵

(x0)(r↵). There-
fore, it follows from the definition of µ↵ that

Z

B
x0 (1/2)\B0(2R)

|⌘Rṽ↵|2
]

k dvg
↵

 µ↵(r↵) = � < ✏0

for all ↵ large enough and x0 2 Rn such that 1/2 + |x0| < R. With the Sobolev
inequality (3.5) on Rn, we apply Proposition 3.4.1 to (⌘Rṽ↵)↵, and we get that

lim
↵!+1

⌘Rṽ↵ = ⌘Rv strongly in H2
k(Bx0(1/4)).

Using a finite covering, we then have ṽ↵ ! v strongly in H2
k(B0(R/2)) as ↵! +1.

Sobolev’s embedding theorem yield the convergence in L2]
k(B0(1)). Since

Z

B0(1)
|ṽ↵|2

]

k dvg
↵

=

Z

B
x

↵

(r
↵

)
|v↵|2

]

k dvg = µ↵(r↵) = � > 0,

passing to the limit ↵ ! +1 yields
R
B0(1)

|v|2]k dx = � 6= 0, and therefore v 6⌘ 0.
This proves the claim and ends Step 5. ⇤
Note that indeed, we have proved that

(3.31) lim
↵!+1

ṽ↵ = v strongly in H2
k(B0(R)) for all R > 0.

We choose a sequence (r̃↵) of positive real numbers as in (3.8) with ⌘ 2 C1
c (B0(�))

(with � 2 (0, ig(M̃))) identically 1 around 0. As in Definition 3.2.1, we set

V↵(x) := Bx
↵

,r
↵

(v) := ⌘

✓
exp�1

x
↵

(x)

r̃↵

◆
r
�n�2k

2
↵ v

✓
exp�1

x
↵

(x)

r↵

◆

We have that V↵ 2 H2
k,0(M).

Step 6: We claim that

V↵ * 0 in H2
k,0(M) as ↵! +1.(3.32)



70 3. STRUWE’S DECOMPOSITION FOR A POLYHARMONIC OPERATOR

Proof of the claim. We argue essentially as in [13]. We fix 0  l  k and we define
✏↵ := r↵/r̃↵ such that lim↵!+1 ✏↵ = 0. We fix R � 0 (potentially 0). It follows
from the comparison Lemma 9.1 of [13] that there exists C > 0 such that
Z

M\B
x

↵

(Rr
↵

)
(�l/2

g V↵)
2 dvg  C

Z

B0(�r̃↵)\B0(Rr
↵

)
(�l/2(V↵ � expx

↵

))2 dx

 Cr2(k�l)
↵

Z

B0(�✏
�1
↵

)\B0(R)

⇣
�l/2 (⌘ (✏↵·) v)

⌘2
dx

 Cr2(k�l)
↵

Z

B0(�✏
�1
↵

)\B0(R)
|rl(⌘ (✏↵·) v)|2 dx

 Cr2(k�l)
↵

lX

i=0

Z

Rn\B0(R)
|rl�i⌘ (✏↵·) ||riv|2 dx

 Cr2(k�l)
↵

lX

i=0

Z

Rn\B0(R)
✏2(l�i)
↵ |riv|2 dx

Since v 2 D2
k(Rn), we have that riv 2 D2

k�i(Rn), and therefore |riv| 2 L2]
(k�i)(Rn)

where 2](k�i) :=
2n

n�2(k�i) . Therefore, Hölder’s inequality yields

Z

M\B
x

↵

(Rr
↵

)
(�l/2

g V↵)
2 dvg  Cr̃2(k�l)

↵

lX

i=0

 Z

Rn\B0(R)
|riv|2](k�i) dx

! 2

2
]

(k�i)

(3.33)

Taking R = 0 and l = 0, ..., k yields the boundedness of (V↵)↵ in H2
k,0(M).

Arguing as in above, we get that for any R > 0 and any l = 0, ..., k, we have that

(3.34)

Z

B
x

↵

(Rr
↵

)
(�l/2

g V↵)
2 dvg  Cr2(k�l)

↵

lX

i=0

Z

B0(R)
✏2(l�i)
↵ |riv|2 dx

Since riv 2 L2
loc(Rn) for all i = 0, ..., k, then taking l = 0 in (3.33) and (3.34),

letting ↵ ! +1 and then R ! +1 yields V↵ ! 0 in L2(M). Then the weak
compactness of bounded sequences yields (3.32). This proves the claim and ends
Step 6. ⇤
Step 7: We claim that

(3.35) DJ(V↵) �! 0 strongly as ↵! +1
Proof of the claim. We set ' 2 C1

c (M). We have that

hDJ(V↵),'i =
Z

M

�k/2
g V↵�

k/2
g ' dvg �

Z

M

|V↵|2
]

k

�2 V↵' dvg

We fix R > 0 and we define

IR,↵(') :=

Z

B
x

↵

(Rr
↵

)
�k/2

g V↵�
k/2
g ' dvg �

Z

B
x

↵

(Rr
↵

)
|V↵|2

]

k

�2 V↵' dvg

and

IIR,↵(') :=

Z

M\B
x

↵

(Rr
↵

)
�k/2

g V↵�
k/2
g ' dvg �

Z

M\B
x

↵

(Rr
↵

)
|V↵|2

]

k

�2 V↵' dvg.
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Step 7.1: we estimate IIR,↵('). Via Hölder’s and Sobolev inequality, we have that

|IIR,↵(')| 
 Z

D
↵

(R)
(�k/2

g V↵)
2 dvg

! 1
2

⇥ k�k/2
g 'k2(3.36)

+

 Z

D
↵

(R)
|V↵|2

]

k dvg

! 2
]

k

�1

2
]

k ⇥ k'k2]
k



0

BB@

 Z

D
↵

(R)
(�k/2

g V↵)
2 dvg

! 1
2

+

 Z

D
↵

(R)
|V↵|2

]

k dvg

! 2
]

k

�1

2
]

k

1

CCA · k'kH2
k

with D↵(R) := M \Bx
↵

(Rr↵). Lemma 9.1 in [13] and v 2 L2]
k(Rn) yield

(3.37)Z

M\B
x

↵

(Rr
↵

)
|V↵|2

]

k dvg  C

Z

Rn\B0(Rr
↵

)
|V↵ � expx

↵

|2]k dx  C

Z

Rn\B0(R)
|v|2]k dx

Plugging (3.33) with l = k and (3.37) into (3.36), letting R ! +1 and ↵ ! +1
yields

(3.38) lim
R!+1

lim
↵!+1

IIR,↵(')

k'kH2
k

= 0 uniformly wrt ' 2 H2
k,0(M) \ {0}

Step 7.2: We now estimate IR,↵('). We define

'↵(x) = ⌘(✏↵x)r
n�2k

2
↵ ' (expx

↵

(r↵x))

where ✏↵ := r↵/r̃↵. As one checks, '↵ 2 C1
c (Rn). Using the comparison Lemma

9.1 in [13] and arguing as in (3.33)-(3.34), we get that

k'↵kD2
k

(Rn)  Ck'kH2
k

where C > 0 is independent of '. As one checks,

IR,↵(') =

Z

B0(R)
�k/2

g
↵

v�k/2
g
↵

'↵ dvg
↵

�
Z

B0(R)
|v|2]k�2v'↵ dvg

↵

Since g↵ ! Eucl as ↵! +1 in Cp
loc(Rn) for all p � 1, we get

(3.39) IR,↵(') =

Z

B0(R)
�k/2v�k/2'↵ dx�

Z

B0(R)
|v|2]k�2v'↵ dx+o

⇣
k'↵kD2

k

(Rn)

⌘

where the convergence is uniform wrt '↵. Since v is a weak solution to (3.1), then
(3.39) yields

(3.40) lim
R!+1

lim
↵!+1

IR,↵(')

k'kH2
k

= 0 uniformly wrt ' 2 H2
k,0(M) \ {0}

The limits (3.38) and (3.40) yield hDJ(V↵),'i = o(k'kH2
k

) as ↵ ! +1 uniformly

wrt ' 2 C1
c (M). The boundedness of (V↵) in H2

k,0(M) then yields DJ(V↵) ! 0

strongly in (H2
k,0(M))0 as ↵! +1. This proves (3.35) and ends Step 7. ⇤

We define w↵ := v↵ � V↵. It follows from (3.32) that w↵ * 0 weakly in H2
k,0(M).
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Step 8: We claim that

(3.41) DJ(w↵) �! 0 strongly

Proof of the claim. For ' 2 H2
k,0(M), we write

(3.42) hDJ(w↵),'i = hDJ(v↵),'i � hDJ(V↵),'i �
Z

M

�↵' dvg

where �↵ := |w↵|2
]

k

�2 w↵� |v↵|2
]

k

�2 v↵+ |V↵|2
]

k

�2 V↵. Then by applying the Hölder
and Sobolev inequalities we get

����
Z

M

�↵' dvg

����  C k'kH2
k

k�↵k2]
k

/(2]
k

�1)

Step 8.1: We fix R > 0. Inequality (3.15) and Hölder’s inequality yield
Z

M\B
x

↵

(Rr
↵

)
|�↵|2

]

k

/(2]
k

�1) dvg

 C

Z

M\B
x

↵

(Rr
↵

)

⇣
|v↵|2

]

k

�2|V↵|+ |V↵|2
]

k

�2|v↵|
⌘2]

k

/(2]
k

�1)
dvg

 C

✓Z

M

|v↵|2
]

k dvg

◆ 2
]

k

�2

2
]

k

�1

 Z

M\B
x

↵

(Rr
↵

)
|V↵|2

]

k dvg

! 1

2
]

k

�1

+C

✓Z

M

|v↵|2
]

k dvg

◆ 1

2
]

k

�1

 Z

M\B
x

↵

(Rr
↵

)
|V↵|2

]

k dvg

! 2
]

k

�2

2
]

k

�1

Since (v↵) is uniformly bounded in H2
k(M), then (3.37) yields

(3.43) lim
R!+1

lim
↵!+1

Z

M\B
x

↵

(Rr
↵

)
|�↵|2

]

k

/(2]
k

�1) dvg = 0.

This ends Step 8.1.

Step 8.2: We fix R > 0. A change of variable and inequality (3.15) yield
Z

B
x

↵

(Rr
↵

)
|�↵|2

]

k

/(2]
k

�1) dvg

=

Z

B0(R)

���|ṽ↵ � v|2]k�2 (ṽ↵ � v)� |ṽ↵|2
]

k

�2 ṽ↵ + |v|2]k�2 v
���
2]
k

/(2]
k

�1)

dvg
↵

 C

Z

B0(R)

0

@|ṽ↵ � v|
(2

]

k

�2)2
]

k

2
]

k

�1 |v|
2
]

k

2
]

k

�1 + |v|
(2

]

k

�2)2
]

k

2
]

k

�1 |ṽ↵ � v|
2
]

k

2
]

k

�1

1

A dx

For any ⌘ 2 C1
c (Rn), we have that ⌘ṽ↵ * ⌘v weakly in D2

k(Rn). Therefore, up to

extracting a subsequence, (ṽ↵)↵ is uniformly bounded in L2]
k(B0(R)) and goes to v

almost everywhere as ↵! +1. Therefore Lemma 3.3.1 yields that for any R > 0,

(3.44) lim
↵!+1

Z

B
x

↵

(Rr
↵

)
|�↵|2

]

k

/(2]
k

�1) dvg = 0.
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The limits (3.43)-(3.44) yield k�↵k2]
k

/(2]
k

�1) ! 0 as ↵ ! +1. Then by (3.42) we

get DJ(w↵) ! 0 in (H2
k,0(M))0 as ↵ ! +1. This proves (3.41) and ends Step

8. ⇤
Step 9: We claim that we have the following decomposition of energy.

(3.45) J(w↵) = J(v↵)� E(v) + o(1) where o(1) ! 0 as ↵! +1.

Proof of the claim. As one checks,

J(v↵)� J(w↵)� J(V↵) = hDJ(w↵), V↵i
� 1

2]k

Z

M

⇣
|w↵ + V↵|2

]

k � |w↵|2
]

k � 2]k|w↵|2
]

k

�2w↵V↵ � |V↵|2
]

k

⌘
dvg

We fix R > 0. Arguing as in the proof of (3.44), we get that

lim
↵!+1

Z

B
x

↵

(Rr
↵

)

⇣
|w↵ + V↵|2

]

k � |w↵|2
]

k � 2]k|w↵|2
]

k

�2w↵V↵ � |V↵|2
]

k

⌘
dvg = 0.

As one checks, there exists C > 0 such that
���|a+ b|2]k � |a|2]k � 2]k|a|2

]

k

�2ab� |b|2]k
���  C

⇣
|a|2]k�2|b|2 + |a| · |b|2]k�1

⌘

for all a, b 2 R. As in the proof of (3.43), we get that

lim
R!+1

lim
↵!+1

Z

D
↵

(R)

⇣
|w↵ + V↵|2

]

k � |w↵|2
]

k � 2]k|w↵|2
]

k

�2w↵V↵ � |V↵|2
]

k

⌘
dvg = 0,

where D↵(R) := M \Bx
↵

(Rr↵). These yield J(v↵) = J(w↵) + J(V↵) + o(1).

We now estimate J(V↵). The estimates (3.33) and (3.37) yield

lim
R!+1

lim
↵!+1

Z

M\B
x

↵

(Rr
↵

)

⇣
(�k/2

g V↵)
2 + |V↵|2

]

k

⌘
dvg = 0

For R > 0, we have that
Z

B
x

↵

(Rr
↵

)

 
(�k/2

g V↵)2

2
� |V↵|2]k

2]k

!
dvg =

Z

B0(R)

 
(�k/2

g
↵

v)2

2
� |v|2]k

2]k

!
dvg

↵

Since g↵ ! Eucl locally uniformly in Cp for all p and v 2 D2
k(Rn), we get that

lim
R!+1

lim
↵!+1

Z

B
x

↵

(Rr
↵

)

 
(�k/2

g V↵)2

2
� |V↵|2]k

2]k

!
dvg =

Z

Rn

 
(�k/2v)2

2
� |v|2]k

2]k

!
dx

All these estimates yield (3.45). This ends Step 9. ⇤
Step 10: Next we deal with the case

dg(x↵, @M) = O(r↵) as ↵! +1
Since r↵ ! 0 as ↵ ! +1, then there exists x1 2 @M such that x↵ ! x1 as
↵! +1. For any ↵ 2 N, we let z↵ 2 @M be such that

dg(x↵, z↵) = dg(x↵, @M)

In particular, lim↵!+1 z↵ = x1. We choose a family of charts z 7! Tz for z 2
⌦\@M as in (3.7). Since the d(Tz)0 is an isometry, there exists C1, C2 > 0, ⌧1, ⌧2 > 0
such that for any z 2 ⌦ \ @M , r < ⌧1 and y 2 Rn

� \B0(⌧2), one has

BT
z

(y)(C1r) \M ⇢ Tz
�
By(r) \ Rn

�
� ⇢ BT

z

(y)(C2r) \M



74 3. STRUWE’S DECOMPOSITION FOR A POLYHARMONIC OPERATOR

For x 2 r�1
↵ U \ {x1 < 0}, we define

ṽ↵(x) := r
n�2k

2
↵ v↵ � Tz

↵

(r↵x) and g̃↵(x) := Tz
↵

?g (r↵x)

As one checks, for any ⌘ 2 C1
c (Rn), we have that ⌘ṽ↵ 2 D2

k(Rn
�). Arguing as Step

4, we get that there exists v 2 D2
k(Rn

�) such that

⌘ṽ↵ * ⌘v weakly in D2
k(Rn

�) as ↵! +1.

Moreover, using Proposition 3.4.1 and arguing as in Step 5, we get that v 6⌘ 0 is a
weak solution to (3.3) and ṽ↵ ! v as ↵! +1 strongly in H2

k(B0(R)\Rn
�) for all

R > 0. As in Definition 3.2.1, for ↵ 2 N and x 2 M , we set

V↵(x) := Bz
↵

,r
↵

(v)(x) = ⌘
�T �1

z
↵

(x)
�
r
�n�2k

2
↵ v

�
r�1
↵ Tz

↵

�1(x)
�

We define w↵ := v↵ � V↵. Arguing as in Steps 6 to 9, we get that

• w↵ * 0 weakly in H2
k,0(M)

• DJ(w↵) ! 0 weakly in (H2
k,0(M))0

• J(w↵) = J(v↵)� E(v) + o(1)

as ↵! +1. This completes the proof of Lemma 3.4.1.

3.5. Nonnegative Palais-Smale sequences

To prove Theorem 3.2, we first set the following property:

Proposition 3.5.1. Let (u↵) be a Palais-Smale sequence for the functional

I on the space H2
k,0(M). Let d 2 N and let [(x(j)

↵ ), (r(j)↵ ), u(j)], j = 1, ..., d, be
d bubbles as in Theorem 3.1. Then, for any N 2 {1, . . . , d}, there exists L � 0
sequences (yj↵)↵>0 2 M and (�j↵)↵>0 2 (0,+1), j = 1, · · · , L, such that for any
R > 0

lim
R0!+1

lim
↵!+1

Z
⇣
B

x

N

↵

(RrN
↵

)\
S

L

j=1 B
y

j

↵

(R0�j

↵

)
⌘
\M

|u↵ �B
x
(N)
↵

,r
(N)
↵

(u(N))|2]k dvg = 0

where for any j, j = 1, · · · , L, dg(xN
↵ , yj↵) = o(rN↵ ) and �j↵ = o(rN↵ ) as ↵ ! +1.

Moreover, we have that

lim
↵!+1

dg(xi
↵, x

j
↵)

2

ri↵r
j
↵

+
ri↵
rj↵

+
rj↵
ri↵

= +1 for all i 6= j 2 {1, ..., d}.

We omit the proof which goes exactly as in Hebey-Robert [11]. Here we use
the boundary chart (3.7) for bubbles accumulating on the boundary.

We now prove Theorem 3.2. We let (u↵)↵ be as in the statement of the theorem,

and we let [(x(j)
↵ ), (r(j)↵ ), u(j)], j = 1, ..., d, be the associated bubbles. We fix N 2

{1, ..., d}. For simplicity, we define r↵ := r(N)
↵ and x↵ := x(N)

↵ . We assume that
r�1
↵ d(x↵, @M) ! +1 as ↵! +1. It then follows from Proposition 3.5.1 that there

exists a finite set S ⇢ Rn such that lim↵!+1 ṽ↵ = uN strongly in L
2]
k

loc(Rn \ S)
where ṽ↵(x) := r

n�2k
2

↵ u↵(expx
↵

(r↵x)) for x 2 Rn. Up to extracting a subsequence,
the convergence holds a.e. Since u↵ � 0, we then get that uN � 0. It then follows
from Lemma 4 in Ge-Wei-Zhou [7] that there exists � > 0 and a 2 Rn such that
uN = U�,a is of the form (3.6).
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We claim that uN = U�,0, that is a = 0. We prove the claim. Indeed, rescaling
(3.26) and (3.27) yields

Z

r�1
↵

exp�1
x

↵

(Bexp
x

↵

(r
↵

x)(r↵))
|ṽ↵|2

]

k dvg
↵


Z

B0(1)
|ṽ↵|2

]

k dvg
↵

for all z 2 Rn and ↵ large enough. Since the exponential map is a normal chart
and is an isometry at x↵, we get that for all z 2 Rn and all ✏ > 0

expx
↵

(r↵Bz(1� ✏)) ⇢ Bexp
x

↵

(r
↵

z)(r↵).

Plugging these two inequalities together and letting ↵ ! +1, using the strong

convergence (3.31), we get that
R
B

z

(1�✏) |uN |2]k dx  R
B0(1)

|uN |2]k dx. Letting ✏! 0
yields Z

B
z

(1)
|uN |2]k dx 

Z

B0(1)
|uN |2]k dx.

As one checks, since uN = U�,a, where U�,a is as in (3.6), the maximum of the
left-hand-side is achieved if and only if z = a. Therefore a = 0 and uN = U�,0.
This proves the claim.

As a consequence, as one checks, when r�1
↵ d(x↵, @M) ! +1 as ↵ ! +1, the

bubble rewrites

Bx
↵

,r
↵

(uN ) = Bx
↵

,�r
↵

(U1,0) = ⌘

✓
exp�1

x
↵

(·)
r̃↵

◆
↵n,k

✓
�r↵

�2r2↵ + dg(·, x↵)2

◆n�2k
2

.

We fix N 2 {1, ..., d}. We claim that (rN↵ )�1d(xN
↵ , @M) ! +1 as ↵ ! +1. We

argue by contradiction and we assume that the limit is finite. We argue as in the
case above. Up to rescaling, and using the boundary chart (3.7), we get that u↵

goes to uN strongly as ↵! +1 in L
2]
k

loc(Rn\S), where S is finite. Therefore uN is a
nonegative nonzero weak solution to (3.3), contradicting Lemma 3 in Ge-Wei-Zhou
[7]. Therefore the limit is infinite and we are back to the previous case.

All these steps prove Theorem 3.2.
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Part 2

Asymptotic Analysis of a
Hardy-Sobolev elliptic equation

with vanishing singularity





CHAPTER 4

Blow-up Analysis For a Sequence of Solutions of
the Critical Hardy-Sobolev Equations

4.1. Introduction

Let ⌦ be a bounded smooth oriented domain of Rn, n � 3, such that 0 2 @⌦.
We define the Sobolev space H2

1,0(⌦) as the completion of the space C1
c (⌦), the

space of compactly supported smooth functions in ⌦, with respect to the norm

kuk2H2
1,0(⌦) =

Z

⌦

|ru|2 dx

We let 2⇤ := 2n
n�2 be the critical Sobolev exponent for the embeding H2

1,0(⌦) ,!
Lp(⌦). Namely, the embedding is defined and continuous for 1  p  2⇤, and it is
compact i↵ 1  p < 2⇤. Let a 2 C1(⌦) be such that the operator �+ a is coercive
in ⌦, that is, there exists a constant A0 > 0 such that for all ' 2 H2

1,0(⌦)
Z

⌦

⇣
|r'|2 + a'2

⌘
dx � A0

Z

⌦

'2 dx(4.1)

Solutions u 2 C2(⌦) to the problem
8
<

:

�u+ a(x)u = u2⇤�1 in ⌦
u > 0 in ⌦
u = 0 on @⌦

(often referred to as ”Brezis-Nirenberg problem”) are critical points of the func-
tional

u 7!

R

⌦

� |ru|2 + au2
�
dx

✓ R

⌦

|u|2⇤ dx

◆2/2⇤
,

and a natural way to obtain such critical points is to find minimizers to this func-
tional, that is to prove that

µa(⌦) = inf
u2H2

1,0(⌦)\{0}

R

⌦

� |ru|2 + au2
�
dx

✓ R

⌦

|u|2⇤ dx

◆2/2⇤
(4.2)

is achieved. There is a huge and extensive litterature on this problem, starting
with the pioneering article of Brezis-Nirenberg [4] in which the authors completely
solved the question of existence of minimizers for µa(⌦) when a ⌘ Cst and n � 4
for any domain, and n = 3 for a ball. Their analysis took inspiration from the

81
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contributions of Aubin [2] in the resolution of the Yamabe problem. The case when
a is arbitrary and n = 3 was solved by Druet [5] using blowup analysis.

In [10], Ghoussoub-Yuan suggested to approach the minimisation problem by adding
a singularity in the equation as follows. For any s 2 [0, 2), we define

2⇤(s) :=
2(n� s)

n� 2

so that 2⇤ = 2⇤(0). Weak solutions u 2 H2
1,0(⌦)\{0} to the problem

8
><

>:

�u+ a(x)u = u2⇤(s)�1

|x|s in ⌦

u � 0 in ⌦
u = 0 on @⌦.

Note here that 0 2 @⌦ is a boundary point. Such solutions can be achieved as
minimizers for the problem

µs,a(⌦) = inf
u2H2

1,0(⌦)\{0}

R

⌦

� |ru|2 + au2
�
dx

✓ R

⌦

|u|2⇤(s)

|x|s dx

◆2/2⇤(s)
for s 2 (0, 2)(4.3)

Consider a sequence of positive real numbers (s✏)✏>0 such that lim
✏!0

s✏ = 0. We let

(u✏)✏>0 2 C2
�
⌦\{0}� \ C1

�
⌦
�
such that

8
><

>:

�u✏ + au✏ =
u2⇤(s

✏

)�1
✏

|x|s✏ in ⌦,

u✏ > 0 in ⌦,
u✏ = 0 on @⌦.

(4.4)

Moreover, we assume that the (u✏)’s are of minimal energy type in the sense that
R

⌦

� |ru✏|2 + au2
✏

�
dx

✓ R

⌦

|u
✏

|2⇤(s
✏

)

|x|s dx

◆2/2⇤(s
✏

)
= µs

✏

,a(⌦)  1

K(n, 0)
+ o(1)(4.5)

as ✏! 0, where K(n, 0) > 0 is the best constant in the Sobolev embedding defined
in (4.6). Indeed, it follows from Ghoussoub-Robert [8,9] that such a family (u✏)✏
exists if the the mean curvature of @⌦ at 0 is negative.

In this chapter, we are interested here in studying the asymptotic behavior of the
sequence (u✏)✏>0 as ✏ ! 0. As proved in Proposition 4.3.2, if the weak limit u0

of (u✏)✏ in H2
1,0(⌦) is nontrivial, then the convergence is indeed strong and u0 is

a minimizer of µa(⌦). We are dealing here with the more delicate case u0 ⌘ 0, in
which blow-up necessarily occurs. In the spirit of the C0�theory of Druet-Hebey-
Robert [6], our first result is the following:

Theorem 4.1. Let ⌦ be a bounded smooth oriented domain of Rn, n � 3 ,
such that 0 2 @⌦, and let a 2 C1(⌦) be such that the operator � + a is coercive
in ⌦. Let (s✏)✏>0 2 (0, 2) be a sequence such that lim

✏!0
s✏ = 0. Suppose that the

sequence (u✏)✏>0 2 H2
1,0(⌦), where for each ✏ > 0, u✏ satisfies (4.4) and (4.5), is a

blowup sequence, i.e

u✏ * 0 weakly in H2
1,0(⌦) as ✏! 0
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Then, there exists C > 0 such that for all ✏ > 0

u✏(x)  C

✓
µ✏

µ2
✏ + |x� x✏|2

◆n�2
2

for all x 2 ⌦

where

µ
�n�2

2
✏ = u✏(x✏) = max

x2⌦
u✏(x).

With this optimal pointwise control, we are able to obtain more informations
on the localization of the blowup point x0 := lim✏!0 x✏ and the blowup parameter
(µ✏)✏. We let Ga : ⌦ ⇥ ⌦ \ {(x, x) : x 2 ⌦} �! R is the Green’s function of the
coercive operator � + a in ⌦ with Dirichlet boundary conditions. For any x 2 ⌦
we write Ga

x as:

Ga
x(y) =

1

(n� 2)!n�1|x� y|n�2
+ gax(y)

where !n�1 is the area of the (n� 1)- sphere. In dimension n = 3 or when a ⌘ 0,
one has that gax 2 C2(⌦ \ {x}) \ C0,✓(⌦) for some 0 < ✓ < 1, and ga is called
the regular part of the Green’s function Ga. In particular, when n = 3 or a ⌘ 0,
mx(⌦, a) := gax(x) is defined for all x 2 ⌦ and is called the mass of the operator
�+ a.

Theorem 4.2. Let ⌦ be a bounded smooth oriented domain of Rn, n � 3 ,
such that 0 2 @⌦, and let a 2 C1(⌦) be such that the operator � + a is coercive
in ⌦. Let (s✏)✏>0 2 (0, 2) be a sequence such that lim

✏!0
s✏ = 0. Suppose that the

sequence (u✏)✏>0 2 H2
1,0(⌦), where for each ✏ > 0, u✏ satisfies (4.4) and (4.5), is a

blowup sequence, i.e

u✏ * 0 weakly in H2
1,0(⌦) as ✏! 0

We let (µ✏)✏ 2 (0,+1) and (x✏)✏ 2 ⌦ be such that

µ
�n�2

2
✏ = u✏(x✏) = max

x2⌦
u✏(x).

We define x0 := lim✏!0 x✏ and we assume that

x0 2 ⌦ is an interior point.

Then

lim
✏!0

s✏
µ2
✏

= 2⇤K(n, 0)
2⇤

2⇤�2 dn a(x0) for n � 5

lim
✏!0

s✏
µ2
✏ log (1/µ✏)

= 256!3K(4, 0)2 a(x0) for n = 4

lim
✏!0

s✏
µn�2
✏

= �nb2nK(n, 0)n/2gax0
(x0) for n = 3 or a ⌘ 0.

where gax0
(x0) the mass at the point x0 2 ⌦ for the operator �+ a, where

dn =

Z

Rn

1
⇣
1 + |x|2

n(n�2)

⌘n�2 dx for n � 5 ; bn =

Z

Rn

1
⇣
1 + |x|2

n(n�2)

⌘n+2
2

dx

and !3 is the area of the 3- sphere.

When x0 2 @⌦ is a boundary point, we get similar estimates:
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Theorem 4.3. Let ⌦ be a bounded smooth oriented domain of Rn, n � 3 ,
such that 0 2 @⌦, and let a 2 C1(⌦) be such that the operator � + a is coercive
in ⌦. Let (s✏)✏>0 2 (0, 2) be a sequence such that lim

✏!0
s✏ = 0. Suppose that the

sequence (u✏)✏>0 2 H2
1,0(⌦), where for each ✏ > 0, u✏ satisfies (4.4) and (4.5), is a

blowup sequence, i.e

u✏ * 0 weakly in H2
1,0(⌦) as ✏! 0

We let (µ✏)✏ 2 (0,+1) and (x✏)✏ 2 ⌦ be such that

µ
�n�2

2
✏ = u✏(x✏) = max

x2⌦
u✏(x).

Assume that
lim
✏!0

x✏ = x0 2 @⌦.

Then

(1) If n = 3 or a ⌘ 0, then as ✏! 0

lim
✏!0

s✏d(x✏, @⌦)n�2

µn�2
✏

=
nn�1(n� 2)n�1K(n, 0)n/2!n�1

2n�2
.

Moreover, d(x✏, @⌦) = (1 + o(1))|x✏| as ✏! 0. In particular x0 = 0.

(2) If n = 4. Then as ✏! 0

s✏
4

�
K(4, 0)�2 + o(1)

��
✓

µ✏

d(x✏, @⌦)

◆2

(32!3 + o(1)) = µ2
✏ log

✓
d(x✏, @⌦)

µ✏

◆
[64!3a(x0) + o(1)]

(3) If n � 5. Then as ✏! 0

s✏(n� 2)

2n

⇣
K(n, 0)�n/2 + o(1)

⌘
�
✓

µ✏

d(x✏, @⌦)

◆n�2✓nn�2(n� 2)n!n�1

2n�1
+ o(1)

◆
= µ2

✏ [dna(x0) + o(1)]

where

dn =

Z

Rn

1
⇣
1 + |x|2

n(n�2)

⌘n�2 dx for n � 5

Theorem 4.3 is a particular case of Theorem 4.10 proved in Section 4.8.

The main di�culty in our analysis is due to the natural singularity at 0 2 @⌦.
Indeed, there is a balance between two facts. First, since s✏ > 0, this singularity
exists and has an influence on the analysis, and in particular on the Pohozaev iden-
tity (see the statement of Theorem 4.2). But, second, since s✏ ! 0, the singularity
should cancel, at least asymptotically. In this perspective, our results are twofolds.

Theorem 4.1 asserts that the pointwise control is the same as the control of the
classical problem with s✏ = 0: however, to prove this result, we need to perform
a very delicate analysis of the blowup with the perturbation s✏ > 0, even for the
initial steps that are usually standard in the case s✏ = 0 (these are Sections 4.4 and
4.5).

The influence and the role of s✏ > 0 is much more striking in Theorems 4.2 and
4.3. Compared to the case s✏ = 0, the Pohozaev identity (see Section 4.7) enjoys
an additional term involving s✏ that is present in the statement of Theorems 4.2
and 4.3. Heuristically, this is due to the fact that the limiting equation �u =
|x|�su2⇤(s)�1 is not invariant under the action of the translations when s > 0.
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Some classical references for the blow-up analysis of nonlinear critical elliptic pdes
are Rey [16], Adimurthi- Pacella-Yadava [1], Han [11], Hebey-Vaugon [13] and
Khuri-Marques-Schoen [15]. The analysis of the 3D problem by Druet [5] and the
monograph [6] by Druet-Hebey-Robert were important sources of inspiration.

This chapter is organized as follows. In Section 4.2, we recall and prove some
general facts on Hardy-Sobolev inequalities. In Section 4.3, we prove a few useful
general and classical statements. Section 4.4 is a long section devoted to the proof
of convergence to a ground state up to rescaling. In Section 4.5, we perform a
delicate blow-up analysis to get a first pointwise control on u✏. The optimal control
of Theorem 4.1 is proved in Section 4.6. With the pointwise control of Theorem
4.1, we are able to estimate the maximum of the u✏’s when the blowup point is in
the interior of the domain (Section 4.7) or on the boundary (Section 4.8).

4.2. Some results on Hardy, Sobolev and Hardy-Sobolev inequalities
on Rn

The space D1,2(Rn) is defined as the completion of the space C1
c (Rn), the space

of compactly supported smooth functions in Rn, with respect to the norm

kuk2D1,2 =

Z

Rn

|ru|2 dx

The embedding D1,2(Rn) ,! L2⇤(Rn) is continuous, and we denote the best con-
stant of this embedding by K(n, 0) which can be characterised as

1

K(n, 0)
= inf

u2D1,2(Rn)\{0}

R

Rn

|ru|2 dx

✓ R

Rn

|u|2⇤ dx

◆2/2⇤
(4.6)

We have for all u 2 D1,2(Rn)

0

@
Z

Rn

|u(x)|2⇤ dx

1

A
2/2⇤

 K(n, 0)

Z

Rn

|ru|2 dx The Sobolev inequality

(4.7)

We start with the following well known results. Proofs are included for completeness

Lemma 4.2.1.

(i) For any u 2 D1,2(Rn) one has
Z

Rn

|u(x)|2
|x|2 dx 

✓
2

n� 2

◆2 Z

Rn

|ru|2 dx The Hardy Inequality(4.8)

(ii) There exists a constant CHS > 0 such that for all u 2 D1,2(Rn) one has

0

@
Z

Rn

|u(x)|2⇤(s)
|x|s dx

1

A
2/2⇤(s)

 CHS

Z

Rn

|ru|2 dx The Hardy-Sobolev Inequality

(4.9)
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Proof. By density it is enough to consider u 2 C1
c (Rn). For a x 2 Rn we

have

|u(x)|2 = �
+1Z

1

⇣
|u(tx)|2

⌘0
dt

= �2

+1Z

1

u(tx) hru(tx), xi dt

By Fubini theorem we then have

Z

Rn

|u(x)|2
|x|2 dx = �2

+1Z

1

Z

Rn

u(tx)

|x|2 hru(tx), xi dx dt

= �2

+1Z

1

Z

Rn

u(tx)

⌧
ru(tx),

x

|x|2
�

dx dt

= �2

+1Z

1

1

tn�1
dt⇥

Z

Rn

u(x)

⌧
ru(x),

x

|x|2
�

dx

= � 2

n� 2

Z

Rn

u(x)

|x|
⌧
ru(x),

x

|x|
�

dx

Using Hölder inequality we obtain that

Z

Rn

|u(x)|2
|x|2 dx 

✓
2

n� 2

◆0

@
Z

Rn

|u(x)|2
|x|2 dx

1

A
1/20

@
Z

Rn

|ru(x)|2 dx

1

A
1/2

Therefore
Z

Rn

|u(x)|2
|x|2 dx 

✓
2

n� 2

◆2 Z

Rn

|ru(x)|2 dx

and we have the Hardy inequality .

Now for u 2 D1,2(Rn) we have
Z

Rn

|u(x)|2⇤(s)
|x|s dx =

Z

Rn

|u(x)|s
|x|s |u(x)|2⇤(s)�s dx


0

@
Z

Rn

|u(x)|2
|x|2 dx

1

A
s/20

@
Z

Rn

|u(x)|2⇤dx
1

A

2�s

2

by Hölder inequality

 K(n, 0)
2�s

2
n

n�2

✓
2

n� 2

◆s
0

@
Z

Rn

|ru(x)|2 dx

1

A
2⇤(s)/2

by Hardy inequality (4.8) and Sobolev inequality (4.7)
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Hence we have obtained that for all u 2 D1,2(Rn)
0

@
Z

Rn

|u(x)|2⇤(s)
|x|s dx

1

A
2/2⇤(s)


"
K(n, 0)

n

2 (
2�s

n�s

)
✓

2

n� 2

◆2s/2⇤(s)
# Z

Rn

|ru(x)|2 dx

This completes the lemma. ⇤

We let

1

K(n, s)
= inf

u2D1,2(Rn)\{0}

R

Rn

|ru|2 dx

✓ R

Rn

|u|2⇤(s)

|x|s dx

◆2/2⇤(s)
(4.10)

Proposition 4.2.1.

lim
s!0

K(n, s) = K(n, 0)

Proof. Let u 2 D1,2(Rn). In lemma 4.2.1 we have obtained
0

@
Z

Rn

|u(x)|2⇤(s)
|x|s dx

1

A
2/2⇤(s)


"
K(n, 0)

n

2 (
2�s

n�s

)
✓

2

n� 2

◆2s/2⇤(s)
# Z

Rn

|ru(x)|2 dx

So

K(n, s)  K(n, 0)
n

2 (
2�s

n�s

)
✓

2

n� 2

◆2s/2⇤(s)

Letting s ! 0, one has

lim sup
s!0

K(n, s)  K(n, 0)

Next by Fatou’s lemma
Z

Rn

|u(x)|2⇤ dx  lim inf
s!0

Z

Rn

|u(x)|2⇤(s)
|x|s dx

And so

Z

Rn

|u(x)|2⇤ dx  lim inf
s!0

Z

Rn

|u(x)|2⇤(s)
|x|s dx  lim inf

s!0

2

64K(n, s)2
⇤(s)/2

0

@
Z

Rn

|ru|2 dx

1

A
2⇤(s)/2

3

75 ,

0

@
Z

Rn

|u(x)|2⇤ dx

1

A
2/2⇤


⇣
lim inf
s!0

K(n, s)
⌘Z

Rn

|ru|2 dx

Therefore

K(n, 0)  lim inf
s!0

K(n, s)

Hence

lim
s!0

K(n, s) = K(n, 0)

⇤
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4.3. Hardy-Sobolev inequality on ⌦ and the case of a nonzero weak
limit

Recall that ⌦ is a smooth bounded domain of Rn, n � 3. We then have the
following useful proposition:

Proposition 4.3.1.

lim
s!0

µs,a(⌦) = µa(⌦)

Proof. Let u 2 H2
1,0(⌦)\{0}. One has

Z

⌦

|u(x)|2⇤(s)
|x|s dx =

Z

⌦

|u(x)|s
|x|s |u(x)|2⇤(s)�s dx


0

@
Z

⌦

|u(x)|2
|x|2 dx

1

A
s/20

@
Z

Rn

|u(x)|2⇤dx
1

A

2�s

2

by Hölder inequality


✓

2

n� 2

◆s
0

@
Z

⌦

|ru(x)|2 dx

1

A
s/20

@
Z

⌦

|u(x)|2⇤dx
1

A

2�s

2

by Hardy inequality (4.8)

So

0

@
Z

⌦

|u(x)|2⇤(s)
|x|s dx

1

A
2/2⇤(s)


✓

2

n� 2

◆2s/2⇤(s)
0

@
Z

⌦

|ru(x)|2 dx

1

A
s/2⇤(s)0

@
Z

⌦

|u(x)|2⇤dx
1

A

2�s

2⇤(s)

And hence
R

⌦

�|ru|2 + au2
�
dx

✓ R

⌦

|u|2⇤ dx

◆2/2⇤


R

⌦

�|ru|2 + au2
�
dx

✓ R

⌦

|u|2⇤(s)

|x|s dx

◆2/2⇤(s)

2

64
✓

2

n� 2

◆2s/2⇤(s)
0

@
Z

⌦

|ru(x)|2 dx

1

A
s/2⇤(s)0

@
Z

⌦

|u(x)|2⇤dx
1

A

2�s

2⇤(s)�
2
2⇤
3

75

which, by Sobolev inequality (4.7) gives that for all u 2 H2
1,0(⌦)\{0}

R

⌦

�|ru|2 + au2
�
dx

✓ R

⌦

|u|2⇤ dx

◆2/2⇤


R

⌦

�|ru|2 + au2
�
dx

✓ R

⌦

|u|2⇤(s)

|x|s dx

◆2/2⇤(s)

✓
1

K(n, 0)1/2⇤
2

n� 2

◆sn�2
n�s

So

µa(⌦)  µs,a(⌦)

✓
1

K(n, 0)1/2⇤
2

n� 2

◆sn�2
n�s

Passing to limits as s ! 0, one obtains that

µa(⌦)  lim inf
s!0

µs,a(⌦)
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Let u 2 H2
1,0(⌦)\{0}. By Fatou’s lemma one has

Z

⌦

|u(x)|2⇤ dx  lim inf
s!0

Z

⌦

|u(x)|2⇤(s)
|x|s dx  lim inf

s!0

0

@ 1

µs,a(⌦)

Z

⌦

�|ru|2 + au2
�
dx

1

A
2⇤(s)/2

,

0

@
Z

⌦

|u(x)|2⇤ dx

1

A
2/2⇤

 lim inf
s!0

1

µs,a(⌦)

Z

⌦

�|ru|2 + au2
�
dx

Therefore

lim inf
s!0

1

µs,a(⌦)
� 1

µa(⌦)

And so

lim sup
s!0

µs,a(⌦)  µa(⌦)

Hence

lim
s!0

µs,a(⌦) = µa(⌦)

⇤

We now prove the following proposition for nonzero weak limits:

Proposition 4.3.2. Let ⌦ be a bounded smooth oriented domain of Rn, n � 3
, such that 0 2 @⌦. Let a 2 C1(⌦) be such that the operator � + a is coercive
in ⌦ Let (u✏)✏>0 2 C2

�
⌦\{0}� \ C1

�
⌦
�
be as in (4.4) and (4.5). Then there

exists u0 2 H2
1,0(⌦) such that u✏ * u0 weakly in H2

1,0(⌦) as ✏ ! 0. Indeed,

u0 2 C2
�
⌦\{0}� \ C1

�
⌦
�
is a solution to

8
<

:

�u0 + au0 = u2⇤�1
0 in ⌦

u0 � 0 in ⌦,
u0 = 0 on @⌦

If u0 6= 0, then u0 > 0 in ⌦ and

µa(⌦) =

R

⌦

� |ru0|2 + au2
0

�
dx

✓ R

⌦

|u0|2⇤ dx

◆2/2⇤

Therefore µa(⌦) is attained. Further u✏ ! u0 in H2
1,0(⌦), as ✏! 0.

Proof. First, from the coercivity of the operator � + a it follows that the
sequence (u✏)✏>0 is bounded in H2

1,0(⌦), i.e

ku✏kH2
1,0(⌦) = O(1) as ✏! 0(4.11)

Then from the weak compactness of the unit ball in H2
1,0(⌦) it follows that there

exists u0 2 H2
1,0(⌦) such that upto a subsequence, as ✏! 0

u✏ * u0 weakly in H2
1,0(⌦)
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And so as ✏! 08
<

:

u✏ * u0 weakly in L2⇤(⌦)
u✏ ! u0 strongly in Lp(⌦) for 1 < p < 2⇤

u✏(x) ! u0(x) a.e x in ⌦
(4.12)

In particular, for any ' 2 C1
c (⌦)

Z

⌦

(hru✏,r'i+ au✏') dx �!
Z

⌦

(hru0,r'i+ au0') dx as ✏! 0

One has that
u2⇤(s

✏

)�1
✏

|x|s✏ ! u2⇤�1
0 a.e in ⌦ as ✏! 0 and the sequence

 
u2⇤(s

✏

)�1
✏

|x|s✏

!

✏>0

is bounded in L�0
2⇤

2⇤�1 (⌦) for some �0 < 1 su�ciently small. So by integration theory
Z

⌦

u2⇤(s
✏

)�1
✏

|x|s✏ ' dx �!
Z

⌦

u2⇤�1
0 ' dx

Therefore u0 is a weak solution of the equation
8
<

:

�u0 + au0 = u2⇤�1
0 in ⌦

u0 � 0 in ⌦,
u0 = 0 on @⌦

(4.13)

It follows by the regularity result inGhoussoub-Robert [8], [9] that u0 2 C2
�
⌦\{0}�\

C1
�
⌦
�
. Multiplying both sides of eqn (4.13) by u0 gives that

Z

Rn

�|ru0|2 + au2
0

�
dx =

Z

⌦

u2⇤

0 dx

So if u0 6= 0 it follows from the definition (4.2) of µa(⌦) that
Z

⌦

u2⇤

0 dx � µa(⌦)
2⇤

2⇤�2

Since u✏ * u0 weakly in H2
1,0(⌦) as ✏! 0, using the Fatou’s lemma one has

Z

⌦

|u0(x)|2⇤ dx  lim inf
✏!0

Z

⌦

|u0(x)|2⇤(s✏)
|x|s✏ dx

From (4.4) and (4.5), we have
Z

⌦

|u✏(x)|2⇤(s✏)
|x|s✏ dx = µs

✏

,a(⌦)
2⇤(s

✏

)
2⇤(s

✏

)�2

This together with proposition 4.3.1 gives that
Z

⌦

|u0|2⇤ dx  µa(⌦)
2⇤

2⇤�2

Hence Z

⌦

|u0|2⇤ dx = µa(⌦)
2⇤

2⇤�2
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And so
Z

Rn

�|ru0|2 + au2
0

�
dx = µa(⌦)

2⇤
2⇤�2

Therefore we obtain if u0 6= 0
R

⌦

� |ru0|2 + au2
0

�
dx

✓ R

⌦

|u0|2⇤ dx

◆2/2⇤
= µa(⌦)

Let

v✏ = u✏ � u0

Then as ✏! 0
8
>><

>>:

v✏ * 0 weakly in H2
1,0(⌦)

v✏ * 0 weakly in L2⇤(⌦)
v✏ ! 0 strongly in Lp(⌦) for 1 < p < 2⇤

v✏(x) ! 0 a.e x in ⌦

We have
Z

Rn

�|ru✏|2 + au2
✏

�
dx =

Z

Rn

�|ru0|2 + au2
0

�
dx+

Z

Rn

�|rv✏|2 + av2✏
�
dx+ o(1) as ✏! 0

If u0 6= 0 then

µs
✏

,a(⌦)
2⇤(s

✏

)
2⇤(s

✏

)�2 = µa(⌦)
2⇤

2⇤�2 +

Z

Rn

|rv✏|2 dx+ o(1) as ✏! 0

Letting ✏! 0 and using proposition 4.3.1 we obtain that

lim
✏!0

Z

Rn

|rv✏|2 dx = 0

And therefore

u✏ ! u0 in H2
1,0(⌦) as ✏! 0

⇤

4.4. Preliminary Blow-up Analysis

We let (u✏) be as in Theorem 4.1. We will say that blowup occurs whenever

u✏ * 0 weakly in H2
1,0(⌦) as ✏! 0

We describe the behaviour of such a sequence of solutions (u✏). By regularity, for
all ✏, u✏ 2 C0(⌦). We let x✏ 2 ⌦ and µ✏ > 0 be such that :

u✏(x✏) = max
⌦

u✏(x) and µ
�n�2

2
✏ = u✏(x✏)(4.14)

This section is devoted to the proof of the following theorem:
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Theorem 4.4. Let ⌦ be a bounded smooth oriented domain of Rn, n � 3 ,
such that 0 2 @⌦, and let a 2 C1(⌦) be such that the operator � + a is coercive
in ⌦. Let (s✏)✏>0 2 (0, 2) be a sequence such that lim

✏!0
s✏ = 0. Suppose that the

sequence (u✏)✏>0 2 H2
1,0(⌦), where for each ✏ > 0, u✏ satisfies (4.4) and (4.5), is a

blowup sequence, i.e

u✏ * 0 weakly in H2
1,0(⌦) as ✏! 0

We let (x✏)✏, (µ✏)✏ be as in (4.14). Let k✏ be such that

k✏ := |x✏|s✏/2 µ
2�s

✏

2
✏ for ✏ > 0(4.15)

Then

lim
✏!0

µ✏ = lim
✏!0

k✏ = 0 and lim
✏!0

d(x✏, @⌦)

µ✏
= lim

✏!0

d(x✏, @⌦)

k✏
= +1.

We rescale and define

v✏(x) :=
u✏(x✏ + k✏x)

u✏(x✏)
for x 2 ⌦� x✏

k✏

Then there exists v 2 C1(Rn) such that v 6= 0 and for any ⌘ 2 C1
c (Rn)

⌘v✏ * ⌘v weakly in D1,2(Rn) as ✏! 0

Further for all x 2 Rn v(x)  v(0) = 1 and it satisfies the equation
⇢

�v = v2
⇤�1 in Rn

v � 0 in Rn

One has

v(x) =

0

@ 1

1 + |x|2
n(n�2)

1

A

n�2
2

for x 2 Rn and

Z

Rn

|rv|2 dx =

✓
1

K(n, 0)

◆ 2⇤
2⇤�2

(4.16)

Also

v✏ �! v in C1
loc(Rn) as ✏! 0

and, moreover upto a subsequence, as ✏! 0
✓

µ✏

|x✏|
◆s

✏

! 1 and
k✏
µ✏

! 1(4.17)

The rest of the section is devoted to the proof of Theorem 4.4. It goes through
four steps.

Step 1: We claim that

µ✏ = o(1) and k✏ = o(1) as ✏! 0

Proof. We proceed by contradiction. Suppose

lim
✏!0

µ✏ 6= 0

Then by our definition (4.14) this implies that for for all ✏

ku✏kL1(⌦)  C
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for some positive constant C. Therefore
u2⇤(s

✏

)�1
✏

|x|s✏ is uniformly bounded in Lp(⌦)

for some p > n . Then from eqn (4.4) and standard elliptic estimates (see for
instance [14]) it follows that for all ✏

ku✏kC1,↵(⌦)  C 0

for some positive constant C 0 and ↵ 2 (0, 1). Hence the sequence (u✏) is precompact
in the space C1(⌦). Since u✏ * 0 weakly in H2

1,0(⌦), therefore u✏ ! 0 in C1(⌦),
as ✏! 0.

From (4.4)and (4.5) we obtain that
Z

⌦

|u✏(x)|2⇤(s✏)
|x|s✏ dx = µs

✏

,a(⌦)
2⇤(s

✏

)
2⇤(s

✏

)�2

But if u✏ ! 0 in C1(⌦) as ✏! 0, then this implies that

lim
✏!0

µs
✏

,a(⌦) = 0

And therefore µa(⌦) = 0, a contradiction since the operator � + a is coercive in
⌦. So, we must have that lim

✏!0
µ✏ = 0. The result for k✏ follows from the definition.

This ends Step 1. ⇤

We let

Rn
� = {x 2 Rn : x1 < 0}

where x1 is the first coordinate of a generic point in Rn. This space will be the
limit space in certain cases after blowup. We describe a parametrisation around a

point of the boundary @⌦. Let p 2 @⌦. Then there exists U ,V open in Rn and
a smooth di↵eomorphism T : U �! V such that upto a rotation of coordinates if
necessary
(4.18)8

>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

• 0 2 U and p 2 V
• T (0) = p
• T (U \ {x1 < 0}) = V \ ⌦
• T (U \ {x1 = 0}) = V \ @⌦
• D0T = IRn . Here DxT denotes the di↵erential of T at the point x

and IRn is the identity map on Rn.
• T⇤(0) (e1) = ⌫p where ⌫p denotes the outer unit normal vector to

@⌦ at the point p.
• {T⇤(0)(e2), · · · , (Tm)⇤(0)(en)} forms an orthonormal basis of

Tp@⌦.

Step 2: We claim that

lim
✏!0

|x✏|
µ✏

= +1(4.19)

Proof. Suppose on the contrary

|x✏|
µ✏

= O(1) as ✏! 0
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Then

lim
✏!+1

|x✏| = 0

Let T0 : U ! V be a parametrisation of the boundary as in (4.18) at the point
p = 0. For all ✏ > 0, we let

ṽ✏(x) =
u✏ � T0(µ✏x)

u✏(x✏)
for x 2 U

µ✏
\ {x1  0}

Step 2.1: For any ⌘ 2 C1
c (Rn), one has that ⌘ṽ✏ 2 D1,2(Rn

�) for ✏ > 0 su�ciently

small. We claim that there exists ṽ⌘ 2 D1,2(Rn
�) such that upto a subsequence

⇢
⌘ṽ✏ * ṽ⌘ weakly in D1,2(Rn

�) as ✏! 0
⌘ṽ✏(x) ! ṽ⌘(x) a.e x in Rn

� as ✏! 0

We prove the claim. Let x 2 Rn
�, then

r (⌘ṽ✏) (x) = ṽ✏(x)r⌘(x) + µ✏

u✏(x✏)
⌘(x)D(µ

✏

x)T0 [ru✏ (T0(µ✏x))]

For any ✓ > 0, there exists C(✓) > 0 such that for any a, b > 0

(a+ b)2  C(✓)a2 + (1 + ✓)b2

With this inequality we then obtain
Z

Rn

�

|r (⌘ṽ✏)|2 dx  C(✓)

Z

Rn

�

|r⌘|2ṽ2✏ dx+ (1 + ✓)
µ2
✏

u2
✏(x✏)

Z

Rn

�

⌘2
��D(µ

✏

x)T0 [ru✏ (T0(µ✏x))]
��2 dx

Since D0T0 = IRn we have as ✏! 0
Z

Rn

�

|r (⌘ṽ✏)|2 dx  C(✓)

Z

Rn

�

|r⌘|2ṽ2✏ dx+ (1 + ✓) (1 +O(µ✏))
µ2
✏

u2
✏(x✏)

Z

Rn

�

⌘2 |ru✏ (T0(µ✏x))|2 (1 + o(1))dx

With Hölder inequality and a change of variables this becomes

Z

Rn

�

|r (⌘ṽ✏)|2 dx  C(✓) kr⌘k2Ln

0

@
Z

⌦

u2⇤

✏ dx

1

A

n�2
n

+ (1 + ✓) (1 +O(µ✏))

Z

Rn

|ru✏|2 dx

(4.20)

Now since ku✏kH2
1,0(⌦) = O(1) and µ✏ ! 0 as ✏! 0, so for ✏ > 0 small enough

k⌘ṽ✏kD1,2(Rn

�)  C⌘

Where C⌘ is a constant depending on the function ⌘. The claim then follows from
the reflexivity of D1,2(Rn

�).

Step 2.2: Let ⌘1 2 C1
c (Rn), 0  ⌘1  1 be a smooth cut-o↵ function, such that

⌘1 =

⇢
1 for x 2 B0(1)
0 for x 2 Rn\B0(2)

(4.21)

For any R > 0 we let ⌘R = ⌘1(x/R). Then with a diagonal argument we can assume
that, upto a subsequence for any R > 0 , there exists ṽR 2 D1,2(Rn

�) such that
⇢
⌘Rṽ✏ * ṽR weakly in D1,2(Rn

�) as ✏! 0
⌘Rṽ✏(x) ! ṽR(x) a.e x in Rn

� as ✏! 0
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Since kr⌘Rk2n = kr⌘1k2n for all R > 0, letting ✏! 0 in (4.20) we obtain that
Z

Rn

�

|rṽR|2 dx  C for all R > 0

where C is a constant independent of R. So there exists ṽ 2 D1,2(Rn
�) such that

⇢
ṽR * ṽ weakly in D1,2(Rn

�) as R ! 1
ṽR(x) ! ṽ(x) a.e x in Rn

� as R ! 1

Step 2.3: We claim that ṽ 2 C1(Rn
�) and it satisfies weakly the equation

⇢
�ṽ = ṽ2

⇤�1 in Rn
�

ṽ = 0 on {x1 = 0}
We prove the claim. For i, j = 1, . . . , n, we let gij = (@iT0, @jT0), the metric induced
by the chart T0 on the domain U\{x1 < 0} and let �g denote the Laplace-Beltrami
operator with respect to the metric g. We let

g̃✏ = g (µ✏x)

From eqn (4.4) it follows that for any ✏ > 0 and R > 0, ⌘Rṽ✏ satisfies weakly the
equation
8
<

:
� (⌘Rṽ✏) + µ2

✏ (a � T0(µ✏x)) (⌘Rṽ✏) =
(⌘

R

ṽ
✏

)2
⇤(s

✏

)�1
���T0(µ

✏

x)
µ

✏

���
s

✏

in B0(R) \ {x1 < 0}
⌘Rṽ✏ = 0 on B0(R) \ {x1 = 0}

(4.22)

Now 0  ṽ✏  1 and from the properties of the boundary chart T0, it follows that
for any p > 1 there exists a constant Cp such that

Z

B0(R)\{x1<0}

2

4 (⌘Rṽ✏)
2⇤(s

✏

)�1

���T0(µ✏

x)
µ
✏

���
s
✏

3

5
p

dx  Cp

Z

B0(R)\{x1<0}

1

|x|s✏p dx

So the right hand side of equation (4.22) is uniformly bounded in Lp for some p > n.
Then from standard elliptic estimates (see for instance [14]) it follows that the
sequence (⌘Rṽ✏)✏>0 is bounded in C1,↵0 (B0(R) \ {x1  0}) for some ↵0 2 (0, 1).
So by Arzela-Ascoli’s theorem one has that ṽR 2 C1,↵ (B0(R/2) \ {x1  0}) for
0 < ↵ < ↵0, and that, up to a subsequence

lim
✏!0

⌘Rṽ✏ = ṽR in C1,↵ (B0(R/4) \ {x1  0})
for 0 < ↵ < ↵0. And therefore

ṽR ⌘ 0 on B0(R/4) \ {x1 = 0}(4.23)

Letting ✏! 0 in eqn (4.22) gives that ṽR satisfies weakly the equation
⇢

�ṽR = ṽ2
⇤�1

R in B0(R/4) \ {x1  0}
ṽR = 0 on B0(R/4) \ {x1 = 0}(4.24)

Again we have that: 0  ṽR  1, then again from standard elliptic estimates and
applying the Arzela-Ascoli’s theorem it follows that ṽ 2 C1(Rn

�) and lim
R!+1

ṽR = ṽ
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in C1
loc(Rn

�) up to a subsequence and also that lim
R!+1

ṽR = ṽ in H2
1,loc(Rn

�). Letting

R ! +1 we obtain

�ṽ = ṽ2
⇤�1 in D 0(Rn

�)

This proves our claim and ends Step 2.3.

Step 2.4: we now conclude to prove (4.19). Let x̃✏ 2 U be such that T0(x̃✏) = x✏.
Then for all ✏ > 0

ṽ✏

✓
x̃✏

µ✏

◆
= 1

From the properties (4.18) of the boundary chart T0 it follows that, for all ✏ > 0

|x̃✏|
µ✏

= O

✓ |x✏|
µ✏

◆

So if
|x✏|
µ✏

= O(1) as ✏! 0 , then there exists x̃ 2 Rn
� such that

x̃✏

µ✏
�! x̃ as ✏! 0

For R > 0 su�ciently large we have

ṽR(x̃) = lim
✏!0

(⌘Rṽ✏)

✓
x̃✏

µ✏

◆
= 1

and therefore

ṽ(x̃) = lim
R!+1

ṽR(ỹ) = 1

From Step 2.3, it follows that x̃ 2 Rn
�. But then this implies ṽ 2 C1(Rn

�) is a
nontrivial weak solution of the equation

⇢
�ṽ = ṽ2

⇤�1 in Rn
�

ṽ = 0 on {x1 = 0}
which is impossible, see Struwe’s book [18] (Chapter III , theorem 1.3). Hence one
must have that

lim
✏!0

|x✏|
µ✏

= +1

This completes the proof of (4.19), and therefore Step 2. ⇤

Step 3: We claim that

lim
✏!0

d(x✏, @⌦)

k✏
= +1(4.25)

Proof. We proceed by contradiction and assume that

d(x✏, @⌦)

k✏
= O(1) as ✏! 0

Then we have that

lim
✏!0

x✏ = x0 2 @⌦
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Step 3.1: Let T be a parametrisation of the boundary @⌦ as in (4.18) around the
point p = x0. For all ✏ > 0 let

ũ✏ = u✏ � T on U \ {x1  0}
For i, j = 1, . . . , n, we let gij = (@iT , @jT ) be the metric induced by the chart T on
the domain U \ {x1 < 0}, and let �g denote the Laplace-Beltrami operator with
respect to the metric g.

From eqn (4.4) it follows that for any ✏ > 0, ũ✏ satisfies weakly the equation
8
><

>:

�ũ✏ + a � T (x)ũ✏ =
ũ2⇤(s

✏

)�1
✏

|T (x)|s✏ in U \ {x1 < 0}

ũ✏ = 0 on U \ {x1 = 0}
Let z✏ 2 @⌦ be such that

|z✏ � x✏| = d(x✏, @⌦) for ✏ > 0

And let x̃✏, z̃✏ 2 U be such that

T (x̃✏) = x✏ and T (z̃✏) = z✏

Then it follows from the properties of the boundary chart T , that

lim
✏!0

x̃✏ = 0 = lim
✏!0

z̃✏ , (x̃✏)1 < 0 and (z̃✏)1 = 0

For ✏ > 0 we set

ṽ✏ =
ũ✏ (z̃✏ + k✏x)

ũ✏(x̃✏)
for x 2 U � z̃✏

k✏
\ {x1  0}

Step 3.2: For any ⌘ 2 C1
c (Rn), one has that ⌘ṽ✏ 2 D1,2(Rn

�) for ✏ > 0 su�ciently
small. Let x 2 Rn

�, then

r (⌘ṽ✏) (x) = ṽ✏(x)r⌘(x) + k✏
u✏(x✏)

⌘(x)D(z̃
✏

+k
✏

x)T [ru✏ (T (z̃✏ + k✏x))]

One has the inequality : For any ✓ > 0, there exists C(✓) > 0 such that for any
a, b > 0

(a+ b)2  C(✓)a2 + (1 + ✓)b2

With this inequality we then obtain
Z

Rn

�

|r (⌘ṽ✏)|2 dx  C(✓)

Z

Rn

�

|r⌘|2ṽ2✏ dx+ (1 + ✓)
k2✏

u2
✏(x✏)

Z

Rn

�

⌘2
��D(z̃

✏

+k
✏

x)T [ru✏ (T (z̃✏ + k✏x))]
��2 dx

Since D0T = IRn , we have as ✏! 0
Z

Rn

�

|r (⌘ṽ✏)|2 dx  C(✓)

Z

Rn

�

|r⌘|2ṽ2✏ dx+ (1 + ✓) (1 +O(1 + k✏))
k2✏

u2
✏(x✏)

Z

Rn

�

⌘2 |ru✏ (T (z̃✏ + k✏x))|2 (1 + o(1))dx

With Hölder inequality and a change of variables this becomes

Z

Rn

�

|r (⌘ṽ✏)|2 dx  C(✓)

✓
µ✏

k✏

◆n�2

kr⌘k2Ln

0

@
Z

⌦

u2⇤

✏ dx

1

A

n�2
n

+ (1 + ✓)O(k✏)

✓
µ✏

k✏

◆n�2 Z

Rn

|ru✏|2 dx
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Then by our definition (4.15) and Sobolev inequality (4.7) we obtain for ✏ > 0 small
enough

Z

Rn

�

|r (⌘ṽ✏)|2 dx 
h
C(✓) kr⌘k2Ln

+ (1 + ✓)O(k✏)
i✓ µ✏

|x✏|
◆n�2

2 s
✏

Z

Rn

|ru✏|2 dx


h
C(✓) kr⌘k2Ln

+ (1 + ✓)O(k✏)
i Z

Rn

|ru✏|2 dx(4.26)

since lim
✏!0

|x✏|
µ✏

= +1 by eq. (4.19)

Now ku✏kH2
1,0(⌦) = O(1) and k✏ ! 0 as ✏! 0, so for ✏ > 0 small enough

k⌘ṽ✏kD1,2(Rn

�)  C⌘

Where C⌘ is a constant depending on the function ⌘. It then follows that there
exists v⌘ 2 D1,2(Rn

�) such that upto a subsequence
⇢
⌘ṽ✏ * ṽ⌘ weakly in D1,2(Rn

�) as ✏! 0
⌘ṽ✏(x) ! ṽ⌘(x) a.e x in Rn

� as ✏! 0

Step 3.4: Let ⌘1 2 C1
c (Rn), 0  ⌘1  1 be a smooth cut-o↵ function, such that

⌘1 =

⇢
1 for x 2 B0(1)
0 for x 2 Rn\B0(2)

For any R > 0 we let ⌘R = ⌘1(x/R).Then with a diagonal argument we can assume
that, upto a subsequence for any ✏ > 0 , there exists ṽR 2 D1,2(Rn

�) such that
⇢
⌘Rṽ✏ * ṽR weakly in D1,2(Rn

�) as ✏! 0
⌘Rṽ✏ ! ṽR a.e in Rn

� as ✏! 0

Since kr⌘Rk2n = kr⌘1k2n for all R > 0, letting ✏! 0 in (4.26) we obtain that
Z

Rn

�

|rṽR|2 dx  C for all R > 0

where C is a constant independent of R. So there exists ṽ 2 D1,2(Rn
�) such that

⇢
ṽR * ṽ weakly in D1,2(Rn

�) as R ! 1
ṽR(x) ! ṽ(x) a.e x in Rn

� as R ! 1

Step 3.5: We claim that ṽ 2 C1(Rn
�) and it satisfies weakly the equation

⇢
�ṽ = ṽ2

⇤�1 in Rn
�

ṽ = 0 on {x1 = 0}
Let

g̃✏ = g (z̃✏ + k✏x)

Then from equation (4.4) it follows that for any ✏ > 0 and R > 0, ⌘Rṽ✏ satisfies
weakly the equation
8
><

>:

� (⌘Rṽ✏) + k2✏ (a � T (z̃✏ + k✏x)) (⌘Rṽ✏) =
(⌘

R

ṽ
✏

)2
⇤(s

✏

)�1

|T (z̃
✏

+k

✏

x)
|x

✏

| |s✏ in B0(R) \ {x1 < 0}

⌘Rṽ✏ = 0 on B0(R) \ {x1 = 0}
(4.27)
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From the properties of the boundary chart T it follows that for ✏ > 0 small

T (z̃✏ + k✏x) = x✏ +OR(1)k✏ for x 2 B0(R) \ {x1  0}
where

|OR(1)|  CR

for some CR > 0. Using eq. (4.19) we obtain lim
✏!0

k✏
|x✏| = lim

✏!0

✓
µ✏

|x✏|
◆ 2�s

✏

s

✏

= 0. So

lim
✏!0

����
T (z̃✏ + k✏x)

|x✏|
����
s
✏

= 1 in C0 (B0(R) \ {x1  0})

Equation (4.27) then can be written as
8
<

:

� (⌘Rṽ✏) + k2✏ (a � T (z̃✏ + k✏x)) (⌘Rṽ✏) = (1 + o(1)) (⌘Rṽ✏)
2⇤(s

✏

)�1 in B0(R) \ {x1 < 0}

with ⌘Rṽ✏ = 0 on B0(R) \ {x1 = 0}
(4.28)

where lim
✏!0

o(1) = 0 in C0 (B0(R) \ {x1  0}).
Since 0  ṽ✏  1, it follows from standard elliptic estimates (see for instance [14])
that the sequence (⌘Rṽ✏)✏>0 is bounded in C1,↵0 (B0(R) \ {x1  0}) for some ↵0 2
(0, 1). So by Arzela-Ascoli’s theorem one has that ṽR 2 C1,↵ (B0(R/2) \ {x1  0})
for 0 < ↵ < ↵0, and that, up to a subsequence

lim
✏!0

⌘Rṽ✏ = ṽR in C1,↵ (B0(R/4) \ {x1  0})
for 0 < ↵ < ↵0. And therefore

ṽR ⌘ 0 on B0(R/4) \ {x1 = 0}(4.29)

Letting ✏! 0 in eqn (4.28) gives that ṽR satisfies weakly the equation
⇢

�ṽR = ṽ2
⇤�1

R in B0(R/4) \ {x1  0}
ṽR = 0 on B0(R/4) \ {x1 = 0}(4.30)

Again we have that: 0  ṽR  1, then again from standard elliptic estimates and
applying the Arzela-Ascoli’s theorem it follows that ṽ 2 C1(Rn

�) and lim
R!+1

ṽR = ṽ

in C1
loc(Rn

�) up to a subsequence. Moreover letting R ! +1 we obtain that

�ṽ = ṽ2
⇤�1 in D 0(Rn

�)

This proves our claim and ends Step 3.5.

Step 3.6: we know conclude Step 3. We have that

ṽ✏

✓
x̃✏ � z̃✏

k✏

◆
= 1

From the properties (4.18) of the boundary chart T it follows that, for all ✏ > 0

|x̃✏ � z̃✏|
k✏

= O

✓ |x✏ � z✏|
k✏

◆

So if
d (x✏, @⌦)

k✏
= O(1) as ✏! 0, then there exists x̃ 2 Rn

� such that

x̃✏ � z̃✏
k✏

�! x̃ as ✏! 0



100 4. BLOW-UP ANALYSIS

For R > 0 su�ciently large we have

ṽR(x̃) = lim
✏!0

(⌘Rṽ✏)

✓
x̃✏ � z̃✏

k✏

◆
= 1

and therefore

ṽ(x̃) = lim
R!+1

ṽR(x̃) = 1

From Step 3.5, it follows that x̃ 2 Rn
�. But then this implies ṽ 2 C1(Rn

�) is a
nontrivial weak solution of the equation

⇢
�ṽ = ṽ2

⇤�1 in Rn
�

ṽ = 0 on {x1 = 0}
which is a contradiction, see Struwe’s book [18] (Chapter III , theorem 1.3). This
completes the proof of (4.25) and ends Step 3. ⇤

Step 4: we are now in position to prove Theorem 4.4. Note that the preceding
step yields

lim
✏!0

d(x✏, @⌦)

k✏
= +1

Step 4.1: For any ⌘ 2 C1
c (Rn), one has that ⌘v✏ 2 H2

1 (Rn) for ✏ > 0 su�ciently
small. We claim that for any ⌘ 2 C1

c (Rn), there exists v⌘ 2 D1,2(Rn) such that
upto a subsequence

⌘v✏ * v⌘ weakly in D1,2(Rn) as ✏! 0

Let x 2 Rn, then for ✏ > 0

r (⌘v✏) (x) = v✏r⌘(x) + µ
n�2
2

✏ k✏ ⌘ ru✏(x✏ + k✏x)

One has the inequality : For any ✓ > 0, there exists C(✓) > 0 such that for any
x, y > 0

(x+ y)2  C(✓)x2 + (1 + ✓)y2

With the help of the above inequality we then obtain
Z

Rn

|r (⌘v✏)|2 dx  C(✓)

Z

Rn

|r⌘|2v2✏ dx+ (1 + ✓)µn�2
✏ k2✏

Z

Rn

⌘2 |ru✏(x✏ + k✏x)|2 dx

With Hölder inequality and a change of variables this becomes

Z

Rn

|r (⌘v✏)|2 dx 
✓
µ✏

k✏

◆n�2

C(✓) kr⌘k2Ln

0

@
Z

Rn

u2⇤

✏ dx

1

A

n�2
n

+ (1 + ✓)

✓
µ✏

k✏

◆n�2 Z

Rn

✓
⌘

✓
x� x✏

k✏

◆◆2

|ru✏|2 dx(4.31)
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By the Sobolev inequality (4.7) and our definition of k✏, we obtain for ✏ > 0 small
enough

Z

Rn

|r (⌘v✏)|2 dx 
h
C(✓) kr⌘k2Ln

+ (1 + ✓) sup ⌘2
i✓ µ✏

|x✏|
◆n�2

2 s
✏

Z

Rn

|ru✏|2 dx


h
C(✓) kr⌘k2Ln

+ (1 + ✓) sup ⌘2
i Z

Rn

|ru✏|2 dx

since lim
✏!0

|x✏|
µ✏

= +1 by eq. (4.19)

Now ku✏kH2
1,0(⌦) = O(1) and k✏ ! 0 as ✏! 0, so for ✏ > 0 small enough

k⌘v✏kD1,2(Rn)  C⌘

Where C⌘ is a constant depending on the function ⌘. It then follows that there
exists v⌘ 2 D1,2(Rn) such that upto a subsequence

⇢
⌘v✏ * v⌘ weakly in D1,2(Rn) as ✏! 0
⌘v✏(x) ! v⌘(x) a.e x in Rn as ✏! 0

(4.32)

This proves the claim and ends Step 4.1.

Step 4.2: We claim that there exists v 2 D1,2(Rn) such that for any ⌘ 2 C1
c (Rn)

we have

v⌘ = ⌘v

Let ⌘1 2 C1
c (Rn), 0  ⌘1  1 be a smooth cut-o↵ function, such that

⌘1 =

⇢
1 for x 2 B0(1)
0 for x 2 Rn\B0(2)

For any R > 0 we let ⌘R = ⌘1(x/R). Then with a diagonal argument we can assume
that, upto a subsequence for any ✏ > 0 , there exists vR 2 D1,2(Rn) such that

⇢
⌘Rv✏ * vR weakly in D1,2(Rn) as ✏! 0
⌘Rv✏ ! vR a.e in Rn as ✏! 0

Since kr⌘Rk2n = kr⌘1k2n for all R > 0, letting ✏! 0 in (4.31) we obtain that
Z

Rn

|rvR|2 dx  C for all R > 0

where C is a constant independent of R. So there exists v 2 D1,2(Rn) such that
⇢

vR * v weakly in D1,2(Rn) as R ! 1
vR(x) ! v(x) a.e x in Rn as R ! 1

And therefore for any ⌘ 2 C1
c (Rn)

v⌘ = ⌘v

This ends Step 4.2.

Step 4.3: We claim that v 2 C1(Rn), v 6= 0 and it satisfies weakly the equation

�v = v2
⇤�1 in Rn
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We prove the claim. Using eqn (4.4) it follows that for any ✏ > 0 and R > 0, ⌘Rv✏
satisfies the equation

� (⌘Rv✏) + k2✏a (x✏ + k✏x) (⌘Rv✏) =
(⌘Rv✏)

2⇤(s
✏

)�1

��� x
✏

|x
✏

| +
k
✏

|x
✏

|x
���
s
✏

in D 0(B0(R))(4.33)

From eq. (4.19) we obtain lim
✏!0

k✏
|x✏| = lim

✏!0

✓
µ✏

|x✏|
◆ 2�s

✏

s

✏

= 0. So we have

lim
✏!0

����
x✏

|x✏| +
k✏
|x✏|x

����
s
✏

= 1 in C0 (B0(R))

Then equation (4.33) then can be written as

� (⌘Rv✏) + k2✏a (x✏ + k✏x) (⌘Rv✏) = (1 + o(1)) (⌘Rv✏)
2⇤(s

✏

)�1 in D 0(B0(R))

(4.34)

where lim
✏!0

o(1) = 0 in C0 (B0(R)).

Since 0  v✏  1, it follows from standard elliptic estimates (see for instance [14])
that vR 2 C1 (B0(R)), and up to a subsequence

lim
✏!0

⌘Rv✏ = vR in C1
loc (B0(R))

Letting ✏! 0 in eqn (4.34) gives that vR satisfies the equation

�vR = v2
⇤�1

R in D 0(B0(R))

Further as for any ✏ > 0 and R > 0, ⌘Rv✏(0) = 1, therefore vR(0) = 1 for all R > 0.
Moreover max

x2B0(R)
vR(x) = 1.

Again we have that: 0  vR  1 since ⌘Rv✏ ! vR a.e in Rn as ✏ ! 0. Then again
from standard elliptic estimates it follows that v 2 C1(Rn) and lim

R!+1
vR = v in

C1
loc(Rn) up to a subsequence. Letting R ! +1 we obtain that

�v = v2
⇤�1 in D 0(Rn)

Further we have that max
x2Rn

v(x) = v(0) = 1. By Ca↵erelli, Gidas and Spruck

classification of nonegative D1,2(Rn) solutions of the equation �v = v2
⇤�1 we then

have :

v(x) =

0

@ 1

1 + |x|2
n(n�2)

1

A

n�2
2

for all x 2 Rn

Moreover,

v✏ �! v in C1
loc(Rn) as ✏! 0

This proves our claim and ends Step 4.3.
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Step 4.4: Coming back to equation (4.31) we have for R > 0

Z

Rn

|r(⌘Rv✏)|2 dx  C(✓) kr⌘Rk2Ln

0

B@
Z

B0(2R)\B0(R)

(⌘2Rv✏)
2⇤ dx

1

CA

n�2
n

+ (1 + ✓)

✓
µ✏

k✏

◆n�2 Z

⌦\B
x

✏

(2Rk
✏

)

✓
⌘R

✓
x� x✏

k✏

◆◆2

|ru✏|2 dx

 C(✓)

0

B@
Z

B0(2R)\B0(R)

(⌘2Rv✏)
2⇤ dx

1

CA

n�2
n

+ (1 + ✓)

✓
µ✏

k✏

◆n�2 Z

⌦

|ru✏|2 dx(4.35)

Now u✏ * 0 weakly in H2
1,0(⌦) as ✏ ! 0, where for each ✏ > 0, u✏ satisfies (4.4)

and (4.5). So we have
Z

⌦

|ru✏|2 dx =

Z

⌦

|u✏(x)|2⇤(s✏)
|x|s✏ dx+ o(1)  µs,a(⌦)

2⇤(s
✏

)
2⇤(✏)�2 + o(1) as ✏! 0

Letting ✏! 0 we obtain, using Step 4.2 and proposition 4.3.1, that for R > 0

Z

Rn

|rvR|2 dx  C(✓)

0

B@
Z

B0(2R)\B0(R)

v2
⇤
dx

1

CA

n�2
n

+ (1 + ✓)

✓
lim sup

✏!0

✓
µ✏

|x✏|
◆s

✏

◆n�2
2

µa(⌦)
2⇤

2⇤�2

And then letting R ! +1 gives us

Z

Rn

|rv|2 dx  (1 + ✓)

✓
lim sup

✏!0

✓
µ✏

|x✏|
◆s

✏

◆n�2
2

µa(⌦)
2⇤

2⇤�2

Since ✓ > 0 is arbitrary, this implies that

Z

Rn

|rv|2 dx 
✓
lim
✏!0

✓
µ✏

|x✏|
◆s

✏

◆n�2
2

µa(⌦)
2⇤

2⇤�2 
✓
lim sup

✏!0

✓
µ✏

|x✏|
◆s

✏

◆n�2
2

µa(⌦)
2⇤

2⇤�2

(4.36)

From eq. (4.19) we have lim sup
✏!0

⇣
µ
✏

|x
✏

|

⌘s
✏  1, and since µa(⌦)  1

K(n,0) (see for

instance Aubin [2])

Z

Rn

|rv|2 dx  µa(⌦)
2⇤

2⇤�2 
✓

1

K(n, 0)

◆ 2⇤
2⇤�2

Now

�v = v2
⇤�1 in D 0(Rn

�)

Then by Sobolev inequality (4.7)

Z

Rn

|rv|2 dx �
✓

1

K(n, 0)

◆ 2⇤
2⇤�2
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Hence we have
Z

Rn

|rv|2 dx =

✓
1

K(n, 0)

◆ 2⇤
2⇤�2

Then (4.36) implies that

lim sup
✏!0

✓
µ✏

|x✏|
◆s

✏

� 1

and we have

lim
✏!0

✓
µ✏

|x✏|
◆s

✏

= 1 , lim
✏!0

k✏
µ✏

= 1(4.37)

This ends Step 4.4 and completes the proof of Theorem 4.4. ⇤
As a consequence of Theorem 4.4, we get the following concentration of energy:

Proposition 4.4.1. Under the hypothesis of Theorem 4.4 one further has that

lim
R!+1

lim
✏!0

Z

⌦\B
x

✏

(Rk
✏

)

|u✏(x)|2⇤(s✏)
|x|s✏ dx = 0

Proof. We obtain by change of variables
Z

⌦\B
x

✏

(Rk
✏

)

|u✏(x)|2⇤(s✏)
|x|s✏ dx =

Z

⌦

|u✏(x)|2⇤(s✏)
|x|s✏ dx�

Z

B
x

✏

(Rk
✏

)

|u✏(x)|2⇤(s✏)
|x|s✏ dx

=

Z

⌦

|u✏(x)|2⇤(s✏)
|x|s✏ dx� kn✏

µn�s
✏

✏

Z

B0(R)

|v✏(x)|2⇤(s✏)
|x✏ + k✏x|s✏ dx

=

Z

⌦

|u✏(x)|2⇤(s✏)
|x|s✏ dx�

✓ |x✏|s✏
µs

✏

✏

◆n�2
2

Z

B0(R)

|v✏(x)|2⇤(s✏)��� x
✏

|x
✏

| +
k
✏

|x
✏

|x
���
s
✏

dx

Letting ✏ ! 0 and then R ! +1 one obtains the proposition using Theorem
4.4. ⇤

4.5. Refined Blowup Analysis I

In this section we obtain pointwise bounds on the blowup sequence (u✏)✏>0 that
will be used in next section to get the optimal bound.

Theorem 4.5. With the same hypothesis as in Theorem 4.4, we have that
there exists a constant C > 0 such that for ✏ > 0

|x� x✏|
n�2
2 u✏(x) +

|x� x✏|
n

2

d(x, @⌦)
u✏(x)  C for all x 2 ⌦.

Moreover,

lim
R!+1

lim
✏!0

sup
x2⌦\B

x

✏

(Rk
✏

)
|x� x✏|

n�2
2 u✏(x) = 0

The proof of Theorem 4.5 goes through the proof of the three propositions
below.
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Proposition 4.5.1. With the same hypothesis as in Theorem 4.4, we have that
there exists a constant C > 0 such that for ✏ > 0

|x� x✏|
n�2
2 u✏(x)  C for all x 2 ⌦

Proof. Suppose on the contrary

sup
x2⌦

⇣
|x� x✏|

n�2
2 u✏(x)

⌘
�! +1 as ✏! 0

Let y✏ 2 ⌦ be such that

|y✏ � x✏|
n�2
2 u✏(y✏) = sup

x2⌦

⇣
|x� x✏|

n�2
2 u✏(x)

⌘

Then

|y✏ � x✏|
n�2
2 u✏(y✏) �! +1 as ✏! 0(4.38)

We let

�
�n�2

2
✏ = u✏(y✏)

then µ✏  �✏ and (4.38) becomes

lim
✏!0

|y✏ � x✏|
�✏

= +1
and so we have that

lim
✏!0

�✏ = 0

Step 1. As our first step we show that

lim
✏!0

|y✏|
�✏

= +1(4.39)

Proof. Suppose on the contrary

|y✏|
�✏

= O(1) as ✏! 0

Then this implies that

lim
✏!+1

|y✏| = 0

Let T0 : U ! V be a parametrisation of the boundary as in (4.18) around the point
p = 0. For all ✏ > 0, we let

w̃✏(x) =
u✏ � T0(�✏x)

u✏(y✏)
for x 2 U

�✏
\ {x1  0}

Step 1.1: For any ⌘ 2 C1
c (Rn), one has that ⌘w̃✏ 2 H2

1,0(Rn
�) for ✏ > 0 su�ciently

small. Let x 2 Rn
�, then

r (⌘w̃✏) (x) = w̃✏(x)r⌘(x) + �✏
u✏(y✏)

⌘(x)D(�
✏

x)T0 [ru✏ (T0(�✏x))]

One has the inequality : For any ✓ > 0, there exists C(✓) > 0 such that for any
a, b > 0

(a+ b)2  C(✓)a2 + (1 + ✓)b2
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With this inequality we then obtain
Z

Rn

�

|r (⌘w̃✏)|2 dx  C(✓)

Z

Rn

�

|r⌘|2w̃2
✏ dx+ (1 + ✓)

�2✏
u2
✏(y✏)

Z

Rn

�

⌘2
��D(�

✏

x)T0 [ru✏ (T0(�✏x))]
��2 dx

Since D0T0 = IRn we have for ✏ > 0 su�ciently small
Z

Rn

�

|r (⌘w̃✏)|2 dx  C(✓)

Z

Rn

�

|r⌘|2w̃2
✏ dx+ (1 + ✓) (1 +O(�✏))

�2✏
u2
✏(y✏)

Z

⌦

⌘2 |ru✏ (T0(�✏x))|2 dx

With Hölder inequality and a change of variables this becomes

Z

Rn

�

|r (⌘w̃✏)|2 dx  C(✓) kr⌘k2Ln

0

@
Z

⌦

u2⇤

✏ dx

1

A

n�2
n

+ (1 + ✓) (1 +O(�✏))

Z

Rn

|ru✏|2 dx

(4.40)

Now since ku✏kH2
1,0(⌦) = O(1) and �✏ ! 0 as ✏! 0, so for ✏ > 0 small enough

k⌘w̃✏kD1,2(Rn

�)  C⌘

Where C⌘ is a constant depending on the function ⌘. It then follows that there
exists w⌘ 2 D1,2(Rn

�) such that upto a subsequence
⇢
⌘w̃✏ * w̃⌘ weakly in D1,2(Rn

�) as ✏! 0
⌘w̃✏(x) ! w̃⌘(x) a.e x in Rn

� as ✏! 0
(4.41)

Step 1.2: Let ⌘1 2 C1
c (Rn), 0  ⌘1  1 be a smooth cut-o↵ function, such that

⌘1 =

⇢
1 for x 2 B0(1)
0 for x 2 Rn\B0(2)

For any R > 0 we let ⌘R = ⌘1(x/R). Then with a diagonal argument we can assume
that, upto a subsequence for any R > 0 , there exists w̃R 2 D1,2(Rn

�) such that
⇢
⌘Rw̃✏ * w̃R weakly in D1,2(Rn

�) as ✏! 0
⌘Rw̃✏(x) ! w̃R(x) a.e x in Rn

� as ✏! 0

Since kr⌘Rk2n = kr⌘1k2n for all R > 0, letting ✏! 0 in (4.40) we obtain that
Z

Rn

�

|rw̃R|2 dx  C for all R > 0

where C is a constant independent of R. So there exists w̃ 2 D1,2(Rn
�) such that

⇢
w̃R * w̃ weakly in D1,2(Rn

�) as R ! 1
w̃R(x) ! w̃(x) a.e x in Rn

� as R ! 1

Step 1.3: We claim that w̃ 2 C1(Rn
�) and it satisfies weakly the equation

⇢
�w̃ = w̃2⇤�1 in Rn

�
w̃ = 0 on {x1 = 0}

For i, j = 1, . . . , n, we let gij = (@iT0, @jT0), the metric induced by the chart T0 on
the domain U \ {x1 < 0} and let �g denote the Laplace-Beltrami operator with
respect to the metric g. We let

g̃✏ = g (�✏x)
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From eqn (4.4) it follows that for any ✏ > 0 and R > 0, ⌘Rw̃✏ satisfies weakly the
equation
8
>><

>>:

�g̃
✏

(⌘Rw̃✏) + �2✏ (a � T0(�✏x)) (⌘Rw̃✏) =
(⌘

R

w̃
✏

)2
⇤(s

✏

)�1
���T0(�

✏

x)
�

✏

���
s

✏

in B0(R) \ {x1 < 0}

⌘Rw̃✏ = 0 on B0(R) \ {x1 = 0}
(4.42)

For R > 0 and ✏ > 0 we have

|T0(�✏x)� x✏|
n�2
2 ⌘Rw̃✏(x)  |y✏ � x✏|

n�2
2 �

n�2
2

✏ u✏(y✏),
✓ |T0(�✏x)� x✏|

|y✏ � x✏|
◆n�2

2

⌘Rw̃✏(x)  1,

It follows from the properties of the map T0, that for ✏ > 0 su�ciently small

T0(�✏x) = y✏ +OR(1)�✏ for all x 2 B0(R) \ {x1  0}
where

|OR(1)|  CR

for some CR > 0 depending only on R. Then since lim
✏!0

|y
✏

�x
✏

|
�
✏

= +1, we obtain

lim
✏!0

|T0(�✏x)� x✏|
|y✏ � x✏| = lim

✏!0

|y✏ � x✏ +OR(1)�✏|
|y✏ � x✏| = 1 for all x 2 B0(R) \ {x1  0}

It then follows that for ✏ > 0 su�ciently small

⌘Rw̃✏(x)  2 for all x 2 B0(R) \ {x1  0}
Now, from the properties of the boundary chart T0, it follows that for any p > 1
there exists a constant Cp such that

Z

B0(R)\{x1<0}

2

4 (⌘Rw̃✏)
2⇤(s

✏

)�1

���T0(�✏

x)
�
✏

���
s
✏

3

5
p

dx  Cp

Z

B0(R)\{x1<0}

1

|x|s✏p dx

So the right hand side of equation (4.42) is uniformly bounded in Lp for some p > n.
Then from standard elliptic estimates (see for instance [14]) it follows that the se-
quence (⌘Rw̃✏)✏>0 is bounded in C1,↵0 (B0(R) \ {x1  0}) for some ↵0 2 (0, 1). So
by Arzela-Ascoli’s theorem one has that there exists w̃R 2 C1,↵ (B0(R/2) \ {x1  0})
for 0 < ↵ < ↵0, and that, up to a subsequence

lim
✏!0

⌘Rw̃✏ = w̃R in C1,↵ (B0(R/4) \ {x1  0})

for 0 < ↵ < ↵0. And therefore

w̃R ⌘ 0 on B0(R/4) \ {x1 = 0}(4.43)

Letting ✏! 0 in eqn (4.42) gives that w̃R satisfies weakly the equation
⇢

�w̃R = w̃2⇤�1
R in B0(R/4) \ {x1  0}

w̃R = 0 on B0(R/4) \ {x1 = 0}(4.44)
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We have that 0  w̃R  2, then again from standard elliptic estimates and applying
the Arzela-Ascoli’s theorem it follows that w̃ 2 C1(Rn

�) and lim
R!+1

w̃R = w̃ in

C1
loc(Rn

�) up to a subsequence. Moreover letting R ! +1 we obtain that
⇢

�w̃ = w̃2⇤�1 in Rn
�

w̃ = 0 on {x1 = 0}
This proves our claim and ends Step 1.3.

Step 1.4: Let ỹ✏ 2 U be such that T0(ỹ✏) = y✏. Then for all ✏ > 0

w̃✏

✓
ỹ✏
�✏

◆
= 1

From the properties of the boundary chart T0 it follows that, for all ✏ > 0

|ỹ✏|
�✏

= O

✓ |y✏|
�✏

◆

So if
|y✏|
�✏

= O(1) as ✏! 0 , then there exists ỹ0 2 Rn
� such that

ỹ✏
�✏

�! ỹ0 as ✏! 0

For R > 0 su�ciently large we have

w̃R(ỹ) = lim
✏!0

(⌘Rw̃✏)

✓
ỹ✏
µ✏

◆
= 1

and therefore

w̃(ỹ0) = lim
R!+1

w̃R(ỹ0) = 1

From (4.43), it follows that ỹ0 2 Rn
� . But then this implies w̃ 2 C1(Rn

�) is a
nontrivial weak solution of the equation

⇢
�w̃ = w̃2⇤�1 in Rn

�
w̃ = 0 on {x1 = 0}

which is impossible, see Struwe’s book [18] (Chapter III , theorem 1.3). This ends
Step 1.4, and therefore proves (4.39) and ends Step 1. ⇤

We let

l✏ = |y✏|s✏/2�
2�s

✏

2
✏ for ✏ > 0

Then

lim
✏!0

l✏ = 0

Step 2: We claim that

|y✏|s✏
�s✏✏

= O(1) as ✏! 0(4.45)
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Proof. We proceed by contradiction. Suppose if

lim
✏!0

�s✏✏
|y✏|s✏ = 0

Now
|x✏|s✏
|y✏|s✏ =

�s✏✏
|y✏|s✏

|x✏|s✏
�s✏✏

 �s✏✏
|y✏|s✏

|x✏|s✏
µs

✏

✏

Since lim
✏!0

|x
✏

|s✏
µs

✏

✏

= 1 as shown in (4.17), it follows that one must have

lim
✏!0

|x✏|s✏
|y✏|s✏ = 0

And in particular lim
✏!0

|x
✏

|
|y

✏

| = 0.

We can have two cases:

Case 2.1: We assume that, upto a subsequence, there exists ⇢ > 0 such that

d(y✏, @⌦)

l✏
� 3⇢

For any ✏ > 0 we let

w✏(x) = �
n�2
2

✏ u✏(y✏ + l✏x) for x 2 B0(2⇢)

This is well defined since By
✏

(2l✏⇢) ⇢ ⌦. Using eqn (4.4) it follows that for ✏ > 0,
w✏ satisfies the equation

�w✏ + l2✏a (y✏ + l✏x)w✏ =
w2⇤(s

✏

)�1
✏��� y

✏

|y
✏

| +
l
✏

|y
✏

|x
���
s
✏

in D 0(B0(2⇢))(4.46)

We have

|l✏x+ y✏ � x✏|
n�2
2 w✏(x)  |y✏ � x✏|

n�2
2 �

n�2
2

✏ u✏(y✏) for ✏ > 0 and x 2 B0(2⇢),
����
y✏
|y✏| +

l✏
|y✏|x� x✏

|y✏|
����

n�2
2

w✏(x) 
����
y✏
|y✏| �

x✏

|y✏|
����

n�2
2

for ✏ > 0 and x 2 B0(2⇢)

Since lim
✏!0

l
✏

|y
✏

| = lim
✏!0

⇣
�
✏

|y
✏

|

⌘ 2�s

✏

2
= 0 from (4.39), and since lim

✏!0

|x
✏

|
|y

✏

| = 0, therefore

we obtain that there exist a constant C0 such that for ✏ > 0 small

0  w✏(x)  C0 for x 2 B0(2⇢)

Since w✏ 2 L1 (B0(2⇢)), by standard elliptic estimates (see for instance [14]) from
(4.46) it follows that there exists w0 2 C1 (B0(2⇢)) such that up to a subsequence

lim
✏!0

w✏ = w0 in C1 (B0(⇢))

And in particular we have w0(0) = 1.

We have for ✏ > 0 with a change of variable
Z

B
y

✏

(l
✏

⇢)

|u✏(x)|2⇤(s✏)
|x|s✏ dx =

✓ |y✏|s✏
�s✏✏

◆n�2
2

Z

B0(⇢)

|w✏(x)|2⇤(s✏)��� y
✏

|y
✏

| +
l
✏

|y
✏

|x
���
s
✏

dx
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Passing to the limit as ✏! 0, we have
Z

B0(⇢)

w2⇤

0 dx  lim
✏!0

✓
�s✏✏
|y✏|s✏

◆n�2
2

lim sup
✏!0

Z

⌦

|u✏(x)|2⇤(s✏)
|x|s✏ dx = 0

A contradiction since w0(0) = 1. This completes Case 2.1.

Case 2.2: Suppose that

lim
✏!0

d(y✏, @⌦)

l✏
= 0

Then

lim
✏!0

y✏ = y0 2 @⌦

Let T be a parametrisation of the boundary @⌦ as in (4.18) around the point
p = y0. For all ✏ > 0 let

ũ✏ = u✏ � T on U \ {x1  0}
For i, j = 1, . . . , n, we let gij = (@iT , @jT ) be the metric induced by the chart T
on the domain U \ {x1 < 0}, and let �g denote the Laplace-Beltrami operator
with respect to the metric g. From equation (4.4) it follows that for any ✏ > 0, ũ✏

satisfies weakly the equation
8
><

>:

�gũ✏ + a � T (x)ũ✏ =
ũ2⇤(s

✏

)�1
✏

|T (x)|s✏ in U \ {x1 < 0}

ũ✏ = 0 on U \ {x1 = 0}
Let z0✏ 2 @⌦ be such that

|z0✏ � y✏| = d(y✏, @⌦) for ✏ > 0

And let ỹ✏, z̃0✏ 2 U be such that

T (ỹ✏) = y✏ and T (z̃0✏) = z0✏

Then it follows from the properties of the boundary chart T , that

lim
✏!0

ỹ✏ = 0 = lim
✏!0

z̃0✏ , (ỹ✏)1 < 0 and (z̃0✏)1 = 0

For ✏ > 0 we set

w̃✏ =
ũ✏ (z̃0✏ + l✏x)

ũ✏(ỹ✏)
for x 2 U � z̃0✏

l✏
\ {x1  0}

So for any R > 0, w̃✏ is defined on B0(R) \ {x1  0} for ✏ > 0 small enough. Let

g̃✏ = g (z̃0✏ + l✏x)

Then from equation (4.4) it follows that for ✏ > 0 small, w̃✏ satisfies weakly the
equation
8
>><

>>:

�g̃
✏

w̃✏ + l2✏ (a � T (z̃0✏ + l✏x)) w̃✏ =
w̃2⇤(s

✏

)�1
✏����

T (z̃0
✏

+l

✏

x)
|y

✏

|

����
s

✏

in B0(R) \ {x1 < 0}

w̃✏ = 0 on B0(R) \ {x1 = 0}
(4.47)

From the properties of the boundary chart T it follows that for ✏ > 0 small

T (z̃0✏ + l✏x) = y✏ +OR(1)l✏ for x 2 B0(R) \ {x1  0}



4.5. REFINED BLOWUP ANALYSIS I 111

where

|OR(1)|  CR

for some CR > 0. Then lim
✏!0

l✏
|y✏| = lim

✏!0

✓
�✏
|y✏|

◆ 2�s

✏

2

= 0 from (4.39). Therefore

lim
✏!0

����
T (z̃0✏ + l✏x)

|y✏|
����
s
✏

= 1 in C0 (B0(R) \ {x1  0})

And then eqn (4.47) then can be written as
8
<

:

�g̃
✏

w̃✏ + l2✏ (a � T (z̃0✏ + l✏x)) w̃✏ = (1 + o(1)) w̃2⇤(s
✏

)�1
✏ in B0(R) \ {x1 < 0}

with w̃✏ = 0 on B0(R) \ {x1 = 0}
(4.48)

where lim
✏!0

o(1) = 0 in C0 (B0(R) \ {x1  0}). We have

|T (z̃0✏ + l✏x)� x✏|
n�2
2 w̃✏(x)  |y✏ � x✏|

n�2
2 �

n�2
2

✏ u✏(y✏) for ✏ > 0 and x 2 B0(R) \ {x1 < 0},
����
T (z̃0✏ + l✏x)

|y✏| � x✏

|y✏|
����

n�2
2

w̃✏(x) 
����
y✏
|y✏| �

x✏

|y✏|
����

n�2
2

for ✏ > 0 and x 2 B0(R) \ {x1 < 0}

Since lim
✏!0

l
✏

|y
✏

| = lim
✏!0

⇣
�
✏

|y
✏

|

⌘ 2�s

✏

2
= 0 and since lim

✏!0

|x
✏

|
|y

✏

| = 0, therefore lim
✏!0

����
T (z̃0✏ + l✏x)

|y✏| � x✏

|y✏|
���� = 1

in C0 (B0(R) \ {x1  0}) and therefore, there exist a constant C0 such that for ✏ > 0
small

0  w̃✏(x)  C0 for x 2 B0(2⇢)

By standard elliptic estimates (see for instance [14]) it follows that there exists
w̃0 2 C1 (B0(B0(R) \ {x1  0}) such that up to a subsequence

lim
✏!0

w̃✏ = w̃0 in C1 (B0(R/2) \ {x1  0})

And therefore in particular

w̃0 ⌘ 0 on B0(R/2) \ {x1 = 0}
We have that

w̃✏

✓
ỹ✏ � z̃0✏

l✏

◆
= 1

From the properties of the boundary chart T it follows that, for all ✏ > 0

|ỹ✏ � z̃0✏|
l✏

= O

✓ |y✏ � z0✏|
l✏

◆

So if d(y
✏

,@⌦)
l
✏

= 0 as ✏! 0, then ỹ
✏

�z̃0
✏

l
✏

�! 0 as ✏! 0. And we have

w̃0(0) = 1

A contradiction. This ends Case 2.2 and then Step 2 by proving (4.45). ⇤
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Since lim
✏!0

|y
✏

�x
✏

|
�
✏

= +1, we then also have with (4.45) that

lim
✏!0

|y✏ � x✏|
l✏

= lim
✏!0

|y✏ � x✏|
�✏

�s✏/2✏

|y✏|s✏/2 = +1(4.49)

Step 3: Suppose that

d(y✏, @⌦)

l✏
= O(1) as ✏! 0(4.50)

Then

lim
✏!0

y✏ = y0 2 @⌦

Step 3.1: Let T be a parametrisation of the boundary @⌦ as in (4.18) around the
point p = y0. For ✏ > 0 let

ũ✏ = u✏ � T on U \ {x1  0}
For i, j = 1, . . . , n, we let gij = (@iT , @jT ) be the metric induced by the chart T
on the domain U \ {x1 < 0}, and let �g denote the Laplace-Beltrami operator
with respect to the metric g. From equation (4.4) it follows that for any ✏ > 0, ũ✏

satisfies weakly the equation
8
><

>:

�gũ✏ + a � T (x)ũ✏ =
ũ2⇤(s

✏

)�1
✏

|T (x)|s✏ in U \ {x1 < 0}

ũ✏ = 0 on U \ {x1 = 0}
Let z0✏ 2 @⌦ be such that

��z0,✏ � y✏
�� = d(y✏, @⌦) for ✏ > 0

And let ỹ✏, z̃0✏ 2 U be such that

T (ỹ✏) = y✏ and T (z̃0✏) = z0✏

Then it follows from the properties of the boundary chart T , that

lim
✏!0

ỹ✏ = 0 = lim
✏!0

z̃0✏ , (ỹ✏)1 < 0 and (z̃0✏)1 = 0

For ✏ > 0 we set

w̃✏(x) =
ũ✏ (z̃0✏ + l✏x)

ũ✏(ỹ✏)
for x 2 U � z̃0✏

l✏
\ {x1  0}

Step 3.2: For any ⌘ 2 C1
c (Rn), one has that ⌘w̃✏ 2 H2

1,0(Rn
�) for ✏ > 0 su�ciently

small. Let x 2 Rn
�, then

r (⌘w̃✏) (x) = w̃✏(x)r⌘(x) + l✏
u✏(y✏)

⌘(x)D(z̃0
✏

+l
✏

x)T [ru✏ (T (z̃0✏ + l✏x))]

For any ✓ > 0, there exists C(✓) > 0 such that for any a, b > 0

(a+ b)2  C(✓)a2 + (1 + ✓)b2

With this inequality we then obtain
Z

Rn

�

|r (⌘w̃✏)|2 dx  C(✓)

Z

Rn

�

|r⌘|2w̃2
✏ dx+ (1 + ✓)

l2✏
u2
✏(y✏)

Z

Rn

�

⌘2
��D(z̃0

✏

+l
✏

x)T [ru✏ (T (z̃0✏ + l✏x))]
��2 dx
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Since D0T = IRn , we have for ✏ > 0 su�ciently small
Z

Rn

�

|r (⌘w̃✏)|2 dx  C(✓)

Z

Rn

�

|r⌘|2w̃2
✏ dx+ (1 + ✓) (1 +O(l✏) +O(z̃0✏))

l2✏
u2
✏(y✏)

Z

Rn

�

⌘2 |ru✏ (T (z̃0✏ + l✏x))|2 dx

With Hölder inequality and a change of variables this becomes

Z

Rn

�

|r (⌘w̃✏)|2 dx  C(✓)

✓
�✏
l✏

◆n�2

kr⌘k2Ln

0

@
Z

⌦

u2⇤

✏ dx

1

A

n�2
n

+ (1 + ✓ +O(l✏) +O(z̃0✏))

✓
�✏
l✏

◆n�2 Z

Rn

|ru✏|2 dx

Then by the Sobolev inequality (4.7) we obtain for ✏ > 0 small enough
Z

Rn

�

|r (⌘w̃✏)|2 dx 
h
C(✓) kr⌘k2Ln

+ (1 + ✓ +O(l✏) +O(z̃0✏))
i✓ �✏

|y✏|
◆n�2

2 s
✏

Z

Rn

|ru✏|2 dx


h
C(✓) kr⌘k2Ln

+ (1 + ✓ +O(l✏) +O(z̃0✏))
i Z

Rn

|ru✏|2 dx(4.51)

since from (4.39) lim
✏!0

|y✏|
�✏

= +1
Now ku✏kH2

1,0(⌦) = O(1) and l✏ ! 0 as ✏! 0, so for ✏ > 0 small enough

k⌘w̃✏kD1,2(Rn

�)  C⌘

Where C⌘ is a constant depending on the function ⌘. It then follows that there
exists w⌘ 2 D1,2(Rn

�) such that upto a subsequence
⇢
⌘w̃✏ * w̃⌘ weakly in D1,2(Rn

�) as ✏! 0
⌘w̃✏(x) ! w̃⌘(x) a.e x in Rn

� as ✏! 0

Step 3.3: Let ⌘1 2 C1
c (Rn), 0  ⌘1  1 be a smooth cut-o↵ function, such that

⌘1 =

⇢
1 for x 2 B0(1)
0 for x 2 Rn\B0(2)

For any R > 0 we let ⌘R = ⌘1(x/R). Then with a diagonal argument we can assume
that, upto a subsequence for any ✏ > 0 , there exists w̃R 2 D1,2(Rn

�) such that
⇢
⌘Rw̃✏ * w̃R weakly in D1,2(Rn

�) as ✏! 0
⌘Rw̃✏ ! w̃R a.e in Rn

� as ✏! 0

Since kr⌘Rk2n = kr⌘1k2n for all R > 0, letting ✏! 0 in (4.51) we obtain that
Z

Rn

�

|rw̃R|2 dx  C for all R > 0

where C is a constant independent of R. So there exists w̃ 2 D1,2(Rn
�) such that

⇢
w̃R * w̃ weakly in D1,2(Rn

�) as R ! 1
w̃R(x) ! w̃(x) a.e x in Rn

� as R ! 1

Step 3.4: We claim that w̃ 2 C1(Rn
�) and it satisfies weakly the equation

⇢
�w̃ = w̃2⇤�1 in Rn

�
w̃ = 0 on {x1 = 0}
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Let

g̃✏ = g (z̃0✏ + l✏x)

Then from eqn (4.4) it follows that for any ✏ > 0 and R > 0, ⌘Rw̃✏ satisfies weakly
the equation
8
>><

>>:

�g̃
✏

(⌘Rw̃✏) + l2✏ (a � T (z̃0✏ + l✏x)) (⌘Rw̃✏) =
(⌘

R

w̃
✏

)2
⇤(s

✏

)�1
����
T (z̃0

✏

+l

✏

x)
|y

✏

|

����
s

✏

in B0(R) \ {x1 < 0}

⌘Rw̃✏ = 0 on B0(R) \ {x1 = 0}
(4.52)

From the properties of the boundary chart T it follows that for ✏ > 0 small

T (z̃0✏ + l✏x) = y✏ +OR(1)l✏ for x 2 B0(R) \ {x1  0}
where

|OR(1)|  CR

for some CR > 0. Then lim
✏!0

l✏
|y✏| = lim

✏!0

✓
�✏
|y✏|

◆ 2�s

✏

2

= 0 since lim
✏!0

|y✏|
�✏

= +1, as we

have shown earlier. Therefore

lim
✏!0

����
T (z̃0✏ + l✏x)

|y✏|
����
s
✏

= 1 in C0 (B0(R) \ {x1  0})

And then equation (4.52) then can be written as
8
<

:

� (⌘Rw̃✏) + l2✏ (a � T (z̃0✏ + l✏x)) (⌘Rw̃✏) = (1 + o(1)) (⌘Rw̃✏)
2⇤(s

✏

)�1 in B0(R) \ {x1 < 0}

with ⌘Rw̃✏ = 0 on B0(R) \ {x1 = 0}
(4.53)

where lim
✏!0

o(1) = 0 in C0 (B0(R) \ {x1  0}). For R > 0 and ✏ > 0 we have

|T (z̃0✏ + l✏x)� x✏|
n�2
2 ⌘Rw̃✏(x)  |y✏ � x✏|

n�2
2 �

n�2
2

✏ u✏(y✏),
✓ |T (z̃0✏ + l✏x)� x✏|

|y✏ � x✏|
◆n�2

2

⌘Rw̃✏(x)  1

Since lim
✏!0

|y
✏

�x
✏

|
l
✏

= +1, we obtain

lim
✏!0

|T (z̃0✏ + l✏x)� x✏|
|y✏ � x✏| = lim

✏!0

|y✏ � x✏ +OR(1)l✏|
|y✏ � x✏| = 1 for all x 2 B0(R) \ {x1  0}

It then follows that for ✏ > 0 su�ciently small

⌘Rw̃✏(x)  2 for all x 2 B0(R) \ {x1  0}
By standard elliptic estimates (see for instance [14]) then it follows that the se-
quence (⌘Rw̃✏)✏>0 is bounded in
C1,↵0 (B0(R) \ {x1  0}) for some ↵0 2 (0, 1). So by Arzela-Ascoli’s theorem one
has that w̃R 2 C1,↵ (B0(R/2) \ {x1  0}) for 0 < ↵ < ↵0, and that, up to a
subsequence

lim
✏!0

⌘Rw̃✏ = w̃R in C1,↵ (B0(R/4) \ {x1  0})
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for 0 < ↵ < ↵0. And therefore in particular

w̃R ⌘ 0 on B0(R/4) \ {x1 = 0}(4.54)

Letting ✏! 0 in eqn (4.53) gives that w̃R satisfies weakly the equation
⇢

�w̃R = w̃2⇤�1
R in B0(R/4) \ {x1  0}

w̃R = 0 on B0(R/4) \ {x1 = 0}(4.55)

We have that: 0  w̃R  2, so again from standard elliptic estimates and applying
the Arzela-Ascoli’s theorem it follows that w̃ 2 C1(Rn

�) and lim
R!+1

w̃R = w̃ in

C1
loc(Rn

�) up to a subsequence. Moreover letting R ! +1 we obtain that
8
<

:

�w̃ = w̃2⇤�1 in Rn
�

w̃ � 0 in Rn
�

w̃ = 0 on {x1 = 0}
This proves the claim and ends Step 3.4.

Step 3.5: We have that

w̃✏

✓
ỹ✏ � z̃0✏

l✏

◆
= 1

From the properties of the boundary chart T it follows that, for all ✏ > 0

|ỹ✏ � z̃0✏|
l✏

= O

✓ |y✏ � z0✏|
l✏

◆

So if
d (y✏, @⌦)

l✏
= O(1) as ✏! 0, then there exists ỹ 2 Rn

� such that

ỹ✏ � z̃0✏
l✏

�! ỹ as ✏! 0

For R > 0 su�ciently large we have

w̃R(ỹ) = lim
✏!0

(⌘Rw̃✏)

✓
ỹ✏ � z̃0✏

l✏

◆
= 1

and therefore

w̃(ỹ) = lim
R!+1

w̃R(ỹ) = 1

From (4.54) it follows that ỹ 2 Rn
�. But then this implies w̃ 2 C1(Rn

�) is a nontrivial
weak solution of the equation

⇢
�w̃ = w̃2⇤�1 in Rn

�
w̃ = 0 on {x1 = 0}

which is a contradiction, see Struwe’s book [18] (Chapter III , theorem 1.3). This
proves proposition 4.5.1 when (4.50) holds. This ends Step 3.

Step 4: Suppose that

lim
✏!0

d (y✏, @⌦)

l✏
= +1(4.56)

For ✏ > 0 we let

w✏(x) =
u✏(y✏ + l✏x)

u✏(y✏)
for x 2 ⌦� y✏

l✏
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Step 4.1: For any ⌘ 2 C1
c (Rn), one has that ⌘w✏ 2 H2

1 (Rn) for ✏ > 0 su�ciently
small. We claim that for any ⌘ 2 C1

c (Rn), there exists w⌘ 2 D1,2(Rn) such that
upto a subsequence

⌘w✏ * w⌘ weakly in D1,2(Rn) as ✏! 0

Let x 2 Rn, then for ✏ > 0

r (⌘w✏) (x) = w✏r⌘(x) + �
n�2
2

✏ l✏ ⌘ ru✏(y✏ + l✏x)

For any ✓ > 0, there exists C(✓) > 0 such that for any x, y > 0

(x+ y)2  C(✓)x2 + (1 + ✓)y2

With the help of the above inequality we then obtain
Z

Rn

|r (⌘w✏)|2 dx  C(✓)

Z

Rn

|r⌘|2w2
✏ dx+ (1 + ✓)�n�2

✏ l2✏

Z

Rn

⌘2 |ru✏(y✏ + l✏x)|2 dx

With Hölder inequality and a change of variables this becomes

Z

Rn

|r (⌘w✏)|2 dx 
✓
�✏
l✏

◆n�2

C(✓) kr⌘k2Ln

0

@
Z

⌦

u2⇤

✏ dx

1

A

n�2
n

+ (1 + ✓)

✓
�✏
l✏

◆n�2 Z

⌦

✓
⌘

✓
x� y✏
l✏

◆◆2

|ru✏|2 dx(4.57)

By Sobolev inequality (4.7) we obtain for ✏ > 0 small enough

Z

Rn

|r (⌘w✏)|2 dx 
h
C(✓) kr⌘k2Ln

+ (1 + ✓) sup ⌘2
i✓ �✏

|y✏|
◆n�2

2 s
✏

Z

Rn

|ru✏|2 dx


h
C(✓) kr⌘k2Ln

+ (1 + ✓) sup ⌘2
i Z

Rn

|ru✏|2 dx

since lim
✏!0

|y✏|
�✏

= +1

Now ku✏kH2
1,0(⌦) = O(1) and l✏ ! 0 as ✏! 0, so for ✏ > 0 small enough

k⌘w✏kD1,2(Rn)  C⌘

Where C⌘ is a constant depending on the function ⌘. It then follows that there
exists v⌘ 2 D1,2(Rn) such that upto a subsequence

⇢
⌘w✏ * w⌘ weakly in D1,2(Rn) as ✏! 0
⌘w✏(x) ! w⌘(x) a.e x in Rn as ✏! 0

(4.58)

Step 4.2: We claim that there exists w 2 D1,2(Rn) such that for any ⌘ 2 C1
c (Rn)

we have

w⌘ = ⌘w

Let ⌘1 2 C1
c (Rn), 0  ⌘1  1 be a smooth cut-o↵ function, such that

⌘1 =

⇢
1 for x 2 B0(1)
0 for x 2 Rn\B0(2)
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For any R > 0 we let ⌘R = ⌘1(x/R). Then with a diagonal argument we can assume
that, upto a subsequence for any ✏ > 0 , there exists w̃R 2 D1,2(Rn) such that

⇢
⌘Rw✏ * wR weakly in D1,2(Rn) as ✏! 0
⌘Rw✏ ! wR a.e in Rn as ✏! 0

Since kr⌘Rk2n = kr⌘1k2n for all R > 0, letting ✏! 0 in (4.57) we obtain that
Z

Rn

|rwR|2 dx  C for all R > 0

where C is a constant independent of R. So there exists w 2 D1,2(Rn) such that
⇢

wR * w weakly in D1,2(Rn) as R ! 1
wR(x) ! w(x) a.e x in Rn as R ! 1

And therefore for any ⌘ 2 C1
c (Rn)

w⌘ = ⌘w

This proves the claim.

Step 4.3: We claim that w 2 C1(Rn), w 6= 0 and it satisfies weakly the equation

�w = w2⇤�1 in Rn

Using eqn (4.4) it follows that for any ✏ > 0 and R > 0, ⌘Rw✏ satisfies the equation

� (⌘Rw✏) + l2✏a (y✏ + l✏x) (⌘Rw✏) =
(⌘Rw✏)

2⇤(s
✏

)�1

��� y
✏

|y
✏

| +
l
✏

|y
✏

|x
���
s
✏

in D 0(B0(R))(4.59)

We have lim
✏!0

l✏
|y✏| = lim

✏!0

✓
�✏
|y✏|

◆ 2�s

✏

2

= 0. So we have

lim
✏!0

����
y✏
|y✏| +

l✏
|y✏|x

����
s
✏

= 1 in C0 (B0(R))

Then equation (4.59) then can be written as

� (⌘Rw✏) + l2✏a (y✏ + l✏x) (⌘Rw✏) = (1 + o(1)) (⌘Rw✏)
2⇤(s

✏

)�1 in D 0(B0(R))

(4.60)

where lim
✏!0

o(1) = 0 in C0 (B0(R)). We have for R > 0 and ✏ > 0

|y✏ + l✏x� x✏|
n�2
2 ⌘Rw✏(x)  |y✏ � x✏|

n�2
2 �

n�2
2

✏ u✏(y✏),
✓ |y✏ + l✏x� x✏|

|y✏ � x✏|
◆n�2

2

⌘Rw✏(x)  1

Since lim
✏!0

|y
✏

�x
✏

|
l
✏

= +1, we obtain

lim
✏!0

|y✏ + l✏x� x✏|
|y✏ � x✏| = 1 for all x 2 B0(R) \ {x1  0}

It then follows that for ✏ > 0 su�ciently small

⌘Rw✏(x)  2 for all x 2 B0(R) \ {x1  0} uniformly
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It then follows from standard elliptic estimates (see for instance [14]) that wR 2
C1 (B0(R)), and up to a subsequence

lim
✏!0

⌘Rw✏ = wR in C1
loc (B0(R))

Letting ✏! 0 in eqn (4.60) gives that wR satisfies the equation

�wR = w2⇤�1
R in D 0(B0(R))

Further as for any ✏ > 0 and R > 0, ⌘Rw✏(0) = 1, therefore wR(0) = 1 for all R > 0.
Again we have that: 0  wR  2 since ⌘Rw✏ ! wR a.e in Rn as ✏! 0. Then again
from standard elliptic estimates it follows that w 2 C1(Rn) and lim

R!+1
wR = w in

C1
loc(Rn) up to a subsequence. Moreover letting R ! +1 we obtain that

�w = w2⇤�1 in D 0(Rn)

Moreover w(0) = 1 since wR(0) = 1 for all R > 0, and so w 6= 0. This proves teh
claim and ends Step 4.3.

Step 4.4: We obtain by a change of variable for R > 0 and ✏ > 0
Z

B
y

✏

(Rl
✏

)

|u✏(x)|2⇤(s✏)
|x|s✏ dx =

✓ |y✏|s✏
�s✏✏

◆n�2
2

Z

B0(R)

|w✏(x)|2⇤(s✏)��� y
✏

|y
✏

| +
l
✏

|y
✏

|x
���
s
✏

dx

So
Z

B0(R)

|w✏(x)|2⇤(s✏)��� y
✏

|y
✏

| +
l
✏

|y
✏

|x
���
s
✏

dx =

✓
�s✏✏
|y✏|s✏

◆n�2
2

Z

B
y

✏

(Rl
✏

)

|u✏(x)|2⇤(s✏)
|x|s✏ dx

Passing to the limit as ✏! 0, we have for R > 0
Z

B0(R)

w2⇤ dx  lim sup
✏!0

Z

B
y

✏

(Rl
✏

)

|u✏(x)|2⇤(s✏)
|x|s✏ dx

and so
Z

Rn

w2⇤ dx = lim
R!+1

Z

B0(R)

w2⇤ dx  lim
R!+1

lim sup
✏!0

Z

B
y

✏

(Rl
✏

)

|u✏(x)|2⇤(s✏)
|x|s✏ dx

Now for any R > 0, Bx
✏

(Rk✏) \By
✏

(Rl✏) = ; for ✏ > 0 su�ciently small. For if
x 2 Bx

✏

(Rk✏) \By
✏

(Rl✏), using that µ✏  �✏ and (4.17), we get

|y✏ � x✏|
l✏

 |y✏ � x|
l✏

+
|x� x✏|

l✏
 R

✓
1 +

k✏
l✏

◆
 R

 
1 +

|x✏|s✏/2
µs

✏

/2
✏

�s✏/2✏

|y✏|s✏/2
µ✏

�✏

!

 R

 
1 +

|x✏|s✏/2
µs

✏

/2
✏

�s✏/2✏

|y✏|s✏/2
!

= O(R)

This is a contradiction since we have lim
✏!0

|y✏ � x✏|
l✏

= +1 as shown in (4.49). Then

by proposition 4.4.1
Z

Rn

w2⇤ dx  lim
R!+1

lim sup
✏!0

Z

⌦\B
y

✏

(Rl
✏

)

|u✏(x)|2⇤(s✏)
|x|s✏ dx = 0
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But this contradicts what we have obtained in Step 4.3. Hence (4.38)) does not
hold when (4.56) holds. This ends Step 4.

This completes the proof of Proposition 4.5.1. ⇤

Having obtained the strong bound in Proposition 4.5.1 we show that

Proposition 4.5.2. With the same hypothesis as in theorem 4.4 we have that
there exists a constant C > 0 such that for ✏ > 0

|x� x✏|n/2 |ru✏(x)|  C and |x� x✏|n/2 u✏(x)  Cd(x, @⌦) for all x 2 ⌦

Proof. We proceed by contradiction and assume that there exists a sequence
of points (y✏)✏>0 in ⌦ such that

|y✏ � x✏|n/2 |ru✏(y✏)|+ |y✏ � x✏|n/2 u✏(y✏)

d(y✏, @⌦)
�! +1 as ✏! 0(4.61)

We let

lim
✏!0

x✏ = x0 2 ⌦ and lim
✏!0

y✏ = y0 2 ⌦

Case 1: we assume that x0 6= y0. We choose � > 0 such that 0 < 4� < |x0 � y0|.
Then one has that � < |x� x✏| for all x 2 By0(2�) \ ⌦ and proposition 4.5.1 then
gives us that there exists a constant C(�) > 0 such that

0  u✏(x)  C(�) for all x 2 By0(2�) \ ⌦

Further for ✏ > 0, u✏ solves the equation
(

�u✏ + au✏ =
u2⇤(s

✏

)�1
✏

|x|s✏ in By0(2�) \ ⌦,

u✏ = 0 on By0(2�) \ @⌦.
(4.62)

The right hand side of the above equation is uniformly bounded in Lp (By0(2�) \ ⌦)
for some p > n, for all ✏ > 0 su�ciently small. Then from standard elliptic
estimates (see for instance [14]) it follows that the sequence (u✏)✏>0 is bounded in

C1
�
By0(�) \ ⌦

�
. So there exists a constant C > 0 such that

|ru✏(x)|  C and u✏(x)  Cd(x, @⌦) for all x 2 By0(�) \ ⌦

a contradiction to (4.61), proving the proposition in Case 1.

Case 2: we assume that x0 = y0. Let

↵✏ = |y✏ � x✏|
Then lim

✏!0
↵✏ = 0 .

Case 2.1: We assume that upto a subsequence

d(x✏, @⌦) � 2 |y✏ � x✏|
For ✏ > 0 we let

ũ✏(x) = ↵
n�2
2

✏ u✏ (x✏ + ↵✏x) for x 2 B0(3/2)
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This is well defined since Bx
✏

(2↵✏) ⇢ ⌦. Using lemma proposition 4.5.1 one obtains
that there exists a constant C > 0 such that

✓ |x✏ + ↵✏x� x✏|
↵✏

◆n�2
2

ũ✏(x)  C for x 2 B0(3/2),

|x|n�2
2 ũ✏(x)  C for x 2 B0(3/2)

And so there exists a constant C > 0 such that for ✏ > 0

ũ✏(x)  C for all x 2 B0(3/2) \B0(1/4)

Moreover from equation (4.4) it follows that for ✏ > 0, ũ✏ satisfies the equation

�ũ✏ + ↵2
✏a (y✏ + ↵✏x) ũ✏ =

ũ2⇤(s
✏

)�1
✏��� x✏

↵
✏

+ x
���
s
✏

in D 0
⇣
B0(3/2) \B0(1/4)

⌘

Since 0  ũ✏(x)  C for all x 2 B0(3/2) \B0(1/4), the right hand side of the above

equation is uniformly bounded in Lp
⇣
B0(3/2) \B0(1/4)

⌘
for some p > n, for all

✏ > 0 su�ciently small (the bound even holds in L1 when |x✏/↵✏ ! 1 as ✏! 0).
Then from standard elliptic estimates (see for instance [14]) it follows that

kũ✏kC1(B0(5/4)\B0(1/2)) = O(1) as ✏! 0

The points y
✏

�x
✏

|y
✏

�x
✏

| 2 B0(5/4) \ B0(1/2) for all ✏ > 0. Taking x = y
✏

�x
✏

|y
✏

�x
✏

| one then
obtains as ✏! 0����rũ✏

✓
y✏ � x✏

|y✏ � x✏|
◆���� = O(1), ũ✏

✓
y✏ � x✏

|y✏ � x✏|
◆

= O(1)

comig back to the defination of ũ✏ this implies that as ✏! 0

|y✏ � x✏|n/2 |ru✏(y✏)| = O(1),

|y✏ � x✏|n/2 u✏(y✏)

d(x✏, @⌦)
 |y✏ � x✏|n/2 u✏(y✏)

2 |y✏ � x✏| = O(1)

But this is a contradiction to (4.61). This ends Case 2.1.

Case 2.2: We assume that upto a subsequence

d(x✏, @⌦)  2 |y✏ � x✏|
Let T : U ! V be a parametrisation of the boundary @⌦ as in (4.18) around the
point p = x0. Let z✏ 2 @⌦ be such that

|z✏ � x✏| = d(x✏, @⌦) for ✏ > 0

And let x̃✏, z̃✏ 2 U be such that

T (x̃✏) = x✏ and T (z̃✏) = z✏

Then it follows from the properties of the boundary chart T , that

lim
✏!0

x̃✏ = 0 = lim
✏!0

z̃✏ , (x̃✏)1 < 0 and (z̃✏)1 = 0

For all ✏ > 0, we let

ũ✏(x) = ↵
n�2
2

✏ u✏ � T (z̃✏ + ↵✏x) for x 2 U � z̃✏
↵✏

\ {x1  0}
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For any R > 0, ũ✏ is defined in B0(R) \ {x1  0} for ✏ > 0 small enough. Using
lemma proposition 4.5.1 one obtains that there exists a constant C > 0 such that

✓ |T (z̃✏ + ↵✏x)� x✏|
↵✏

◆n�2
2

ũ✏(x)  C for x 2 B0(R) \ {x1  0}

We let

⇢✏ =
x̃✏ � z̃✏
↵✏

From the properities of the boundary map T it follows that ⇢✏ 2 Rn
� and that

|x̃✏ � z̃✏|
↵✏

= O

✓ |x✏ � z✏|
↵✏

◆
= O(1) as ✏! 0

So there exists ⇢0 2 R� such that

⇢✏ ! ⇢0 as ✏! 0

Also from the properties of the boundary chart T it follows that there exist a
constant CT > 0 such that

|⇢✏ � x|  CT
|T (z̃✏ + ↵✏x)� x✏|

↵✏

Therefore for some constant C > 0

|⇢✏ � x|n�2
2 ũ✏(x)  C for x 2 B0(R) \ {x1  0}

Hence for any R, � > 0 there exist a constant C(R, �) such that for ✏ > 0 small

ũ✏(x)  C(R, �) for all x 2 B0(R) \B⇢0(�) \ {x1  0}
For i, j = 1, . . . , n, we let gij(x) = (@iT (z̃✏ + ↵✏x), @jT (z̃✏ + ↵✏x)), the induced
metric on the domain B0(R) \ {x1 < 0}, and let �g denote the Laplace-Beltrami
operator with respect to the metric g. From equation (4.4) it follows that for any
R, � > 0, ũ✏ satisfies weakly the equation
8
><

>:

�g̃
✏

ũ✏ + ↵2
✏ (a � T (z̃✏ + ↵✏x)) ũ✏ =

ũ
✏

(x)2
⇤(s

✏

)�1

|T (z̃
✏

+↵

✏

x)
↵

✏

|s✏ in B0(R) \B⇢0(�) \ {x1 < 0}

ũ✏ = 0 on B0(R) \B⇢0(�) \ {x1 = 0}
(4.63)

Again from the properties of the boundary chart T , it follows that for any p > 1
there exists a constant Cp(R, �) such that

Z

B0(R)\B
⇢0 (�)\{x1<0}

2

4 (ũ✏)
2⇤(s

✏

)�1

���T (z̃
✏

+↵
✏

x)
↵

✏

���
s
✏

3

5
p

dx  Cp(R, �)

Z

B0(R)\B
⇢0 (�)\{x1<0}

1��� z̃✏↵
✏

+ x
���
s
✏

p dx

 Cp(R, �)

Z

B0(R)

1��� z̃✏↵
✏

+ x
���
s
✏

p dx

Choosing s✏ > 0 su�ciently small it follows that the right hand side of equation
(4.63) is uniformly bounded in Lp for some p > n. Then from standard elliptic
estimates (see for instance [14]) we have

kũ✏kC1(B0(R/2)\B
⇢0 (2�)\{x10}) = O(1) as ✏! 0
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and ũ✏ vanishes on the boundary B0(R/2) \ B⇢0(2�) \ {x1 = 0}. Let ỹ✏ 2 U be
such that T (ỹ✏) = y✏. From the properities of the boundary map T it follows that
a constant CT > 0

1

CT
 ỹ✏ � x̃✏

|y✏ � x✏| =
����
ỹ✏ � z̃✏
↵✏

� ⇢✏

����

Therefore we can choose � > 0 small and R > 0 large such that for ✏ > 0 small
enough.

ỹ✏ � z̃✏
↵✏

2 B0(R/2) \B⇢0(2�) \ {x1 < 0}

It then follows that as ✏! 0
����rũ✏

✓
ỹ✏ � z̃✏
↵✏

◆���� = O(1), ũ✏

✓
ỹ✏ � z̃✏
↵✏

◆
= O(1)

and since ũ✏ vanishes on the boundary B0(R/2)\B⇢0(2�)\{x1 = 0}, it follows that

0  ũ✏

✓
ỹ✏ � z̃✏
↵✏

◆
= O

✓
(ỹ✏ � z̃✏)1

↵✏

◆
= O

✓
(ỹ✏)1
↵✏

◆
= O

✓
d(y✏, @⌦)

↵✏

◆

comig back to the defination of ũ✏ this implies that as ✏! 0

|y✏ � x✏|n/2 |ru✏(y✏)| = O(1),

|y✏ � x✏|n/2 u✏(y✏)

d(x✏, @⌦)
= O(1)

But this contradicts (4.61). This ends Case 2.2.

All these cases prove Proposition 4.5.2. ⇤

As a consequence of Proposition 4.5.2, we get the following:

Corollary 4.5.1. Let (u✏)✏>0 be as in theorem 4.4, and let lim
✏!0

x✏ ! x0 2 ⌦,

then upto a subsequence

lim
✏!0

u✏ = 0 in C1
loc(⌦\{x0})

Proof. Let ⌦0 ⇢⇢ ⌦\{x0} be a compactly contained open set. Then it follows
from the bound obtained in proposition 4.5.1, that ku✏kL1(⌦0) < +1 for all ✏ > 0.

So
u2⇤(s

✏

)�1
✏

|x|s✏ 2 Lp(⌦0) for any p > n, and ✏ > 0 . From eqn (4.4) and with standard

elliptic estimates (see for instance [14]) it follows that for all ✏

ku✏kC1,↵(⌦0)  C 0

for some positive constant C 0 and ↵ 2 (0, 1). Hence the sequence (u✏) is precompact
in the space C1(⌦0). Since u✏ * 0 weakly in H2

1,0(⌦), therefore u✏ ! 0 in C1(⌦0),
as ✏! 0. Note that if 0 /2 ⌦0 then

u✏(x)
2�s

✏

n�2

|x|s✏/2 = O
⇣
u✏(x)

2�s

✏

n�2

⌘
for all x 2 ⌦0
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And if 0 2 ⌦0 then

0  u✏(x)
2�s

✏

n�2

|x|s✏/2 
✓

sup
x2⌦0

|ru✏|
2�s

✏

n�2

◆ |x| 2�s

✏

n�2

|x|s✏/2 =

✓
sup
x2⌦0

|ru✏|
2�s

✏

n�2

◆
|x|( 2�s

✏

n�2 � s

✏

2 )

= O

✓
sup
x2⌦0

|ru✏|
2�s

✏

n�2

◆
for all x 2 ⌦0

Since u✏ ! 0 in C1(⌦0) as ✏! 0 therefore we also have that

lim
✏!0

u✏(x)
2�s

✏

n�2

|x|s✏/2 = 0 in C0
loc(⌦\{x0})

⇤

We slightly improve our estimate in Proposition 4.5.1 to obtain

Proposition 4.5.3. With the same hypothesis as in theorem 4.4 we have

lim
R!+1

lim
✏!0

sup
x2⌦\B

x

✏

(Rk
✏

)
|x� x✏|

n�2
2 u✏(x) = 0

Proof. Suppose on the contrary there exists ✏0 > 0 and a sequence of points
(y✏)✏>0 2 ⌦ such that upto a subsequence

|y✏ � x✏|
n�2
2 u✏(y✏) � ✏

n�2
2

0 and lim
✏!0

|y✏ � x✏|
k✏

= +1(4.64)

It then follows from corollary 4.5.1 that

lim
✏!0

|y✏ � x✏| = 0

Let

�
�n�2

2
✏ = u✏(y✏)

Then (4.64) becomes

C � |y✏ � x✏|
�✏

� ✏0 for all ✏ > 0(4.65)

and so

lim
✏!0

�✏ = 0

Since lim
✏!0

|y
✏

�x
✏

|
k
✏

= +1, using proposition 4.5.1 we obtain that as ✏! 0

k✏
�✏

=
k✏

|y✏ � x✏|
|y✏ � x✏|

�✏
= O

✓
k✏

|y✏ � x✏|
◆

= o(1)(4.66)

We let

l✏ = |y✏|s✏/2�
2�s

✏

2
✏ for ✏ > 0

Then

lim
✏!0

l✏ = 0

Step 1: We claim that

|y✏|s✏
�s✏✏

= O(1) as ✏! 0(4.67)
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Proof. We proceed by contradiction. Suppose that

lim
✏!0

�s✏✏
|y✏|s✏ = 0

Now

|x✏|s✏✏
|y✏|s✏ =

�s✏✏
|y✏|s✏

|x✏|s✏
�s✏✏

 �s✏✏
|y✏|s✏

|x✏|s✏
µs

✏

✏

Since lim
✏!0

|x
✏

|s✏
✏

µs

✏

✏

= 1, it then follows that in this case

lim
✏!0

|x✏|s✏
|y✏|s✏ = 0

And in particular one has that lim
✏!0

|x
✏

|
|y

✏

| = 0 and lim
✏!0

�
✏

|y
✏

| = 0. Then

|y✏ � x✏|
�✏

� |y✏|
�✏

����1�
|x✏|
|y✏|

���� ! +1 as ✏! 0

A contradiction to (4.65) . This completes the proof of (4.67) and ends Step 1. ⇤

Step 2: We claim that there exists c2 > 0 such that for ✏ > 0 small

|y✏ � x✏|
l✏

=
|y✏ � x✏|

�✏

�s✏/2✏

|y✏|s✏/2 � c2(4.68)

This follows directly from (4.67) and (4.65).

Step 3: We assume that there exists ⇢0 > 0 such that upto a subsequence

d(y✏, @⌦)

l✏
� 2⇢0(4.69)

Without loss of generality we can take 2⇢0 < c2. For ✏ > 0 we let

w✏(x) = �
n�2
2

✏ u✏ (y✏ + l✏x) for x 2 B0(⇢0)

This is well defined since By
✏

(l✏⇢0) ⇢ ⌦. Using eqn (4.4) it follows that for ✏ > 0
w✏ satisfies the equation

�w✏ + l2✏a (y✏ + l✏x)w✏ =
w2⇤(s

✏

)�1
✏��� y

✏

|y
✏

| +
l
✏

|y
✏

|x
���
s
✏

in D 0(B0(⇢0))(4.70)

From proposition 4.5.1 we have for some constant C > 0

|l✏x+ y✏ � x✏|
n�2
2 w✏(x)  C �

n�2
2

✏ for ✏ > 0 and x 2 B0(⇢0)
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And so

w✏(x)  C

0

@ 1���x�
⇣

x
✏

�y
✏

l
✏

⌘���

1

A

n�2
2 ✓

�✏
l✏

◆n�2
2

for ✏ > 0 and x 2 B0(⇢0)

 C

0

@ 1���x�
⇣

x
✏

�y
✏

l
✏

⌘���

1

A

n�2
2 ✓

l✏
|y✏|

◆ s

✏

(n�2)
2(2�s

✏

)

for ✏ > 0 and x 2 B0(⇢0)

 C

0

@ 1���x�
⇣

x
✏

�y
✏

l
✏

⌘���

1

A

n�2
2 ✓

l✏
d(y✏, @⌦)

◆ s

✏

(n�2)
2(2�s

✏

)

for ✏ > 0 and x 2 B0(⇢0)

 C

0

@ 1���x�
⇣

x
✏

�y
✏

l
✏

⌘���

1

A

n�2
2 ✓

1

2⇢0

◆ s

✏

(n�2)
2(2�s

✏

)

for ✏ > 0 and x 2 B0(⇢0)

And we have for x 2 B0(⇢0)

c2  |y✏ � x✏|
l✏


����x�

✓
x✏ � y✏

l✏

◆����+ ⇢0 
����x�

✓
x✏ � y✏

l✏

◆����+
c2
2
,

=) c2
2


����x�

✓
x✏ � y✏
�✏

◆����

And so there exists a constant C0 > 0 such that

w✏(x)  C0 for ✏ > 0 and x 2 B0(⇢0)

Also we have in this case : |y
✏

|
l
✏

� d(y
✏

,@⌦)
l
✏

� 2⇢0, so
l
✏

|y
✏

|  1
2⇢0

, and therefore for

x 2 B0(⇢0)

1

2

����
y✏
|y✏| +

l✏
|y✏|x

���� 
3

2

Coming back to equation (4.70) we then have that the right side of the equation
is uniformly bounded in L1 for ✏ > 0 small. Then, again by standard elliptic
estimates it follows that that there exists w0 2 C1 (B0(⇢0)) such that up to a sub-
sequence

lim
✏!0

w✏ = w0 in C1 (B0(⇢0/2))



126 4. BLOW-UP ANALYSIS

So in particular w0(0) = 1. We have for ✏ > 0

Z

B
y

✏

(
⇢0
2 l

✏

)

|u✏(x)|2⇤(s✏)
|x|s✏ dx =

✓ |y✏|s✏
�s✏✏

◆n�2
2

Z

B0(
⇢0
2 )

|w✏(x)|2⇤(s✏)��� y
✏

|y
✏

| +
l
✏

|y
✏

|x
���
s
✏

dx

=

✓ |y✏|
l✏

◆ s

✏

(n�2)
2(2�s

✏

)
Z

B0(
⇢0
2 )

|w✏(x)|2⇤(s✏)��� y
✏

|y
✏

| +
l
✏

|y
✏

|x
���
s
✏

dx

�
✓
d(y✏, @⌦)

l✏

◆ s

✏

(n�2)
2(2�s

✏

)
Z

B0(
⇢0
2 )

|w✏(x)|2⇤(s✏)��� y
✏

|y
✏

| +
l
✏

|y
✏

|x
���
s
✏

dx

� (2⇢0)
s

✏

(n�2)
2(2�s

✏

)

Z

B0(
⇢0
2 )

|w✏(x)|2⇤(s✏)��� y
✏

|y
✏

| +
l
✏

|y
✏

|x
���
s
✏

dx

Passing to the limit as ✏! 0, we have

lim
✏!0

Z

B
y

✏

(
⇢0
2 l

✏

)

|u✏(x)|2⇤(s✏)
|x|s✏ dx �

Z

B0(
⇢0
2 )

w2⇤

0 dx

We have shown in proposition 4.4.1 that

lim
R!+1

lim
✏!0

Z

⌦\B
x

✏

(Rk
✏

)

|u✏(x)|2⇤(s✏)
|x|s✏ dx = 0

So given any �̃ > 0, there exists R̃ large, and ✏̃ > 0 small such that
Z

⌦\B
x

✏

(R̃k
✏

)

|u✏(x)|2⇤(s✏)
|x|s✏ dx  �̃ for ✏ < ✏̃

From (4.68) it follows that for ✏ > 0 small

2⇢0 < c2  |y✏ � x✏|
l✏

 |x✏ � x|
l✏

+
⇢0
2

for x 2 By
✏

⇣⇢0
2
l✏
⌘

Therefore for ✏ > 0 small

|x✏ � x|
k✏

� 3c2
4

for x 2 By
✏

⇣⇢0
2
l✏
⌘

Using (4.66) we have that

k✏
l✏

=
k✏
�✏

�✏
l✏

=
k✏
�✏

�✏
l✏


"
k✏
�✏

✓
1

2⇢0

◆ s

✏

2�s

✏

#

Therefore there exists ✏̃0 > 0 small such that for ✏ < ✏̃0

|x✏ � x|
k✏

� 3c2
4

l✏
k✏

� 3c2
4

R̃ for x 2 By
✏

⇣⇢0
2
l✏
⌘

So for ✏ < ✏̃0

⌦ \By
✏

⇣⇢0
2
l✏
⌘
⇢ ⌦\Bx

✏

(R̃k✏)
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And hence for all �0 > 0
Z

B
y

✏

(
⇢0
2 l

✏

)

|u✏(x)|2⇤(s✏)
|x|s✏ dx 

Z

⌦\B
x

✏

(R̃k
✏

)

|u✏(x)|2⇤(s✏)
|x|s✏ dx  �̃ for ✏ < min{✏̃, ✏̃0}

Since �̃ > 0 is arbitrary, it follows that
Z

B0(
⇢0
2 )

w2⇤

0 dx  lim
✏!0

Z

B
y

✏

(
⇢0
2 l

✏

)

|u✏(x)|2⇤(s✏)
|x|s✏ dx  lim

✏!0

Z

⌦\B
x

✏

(R̃k
✏

)

|u✏(x)|2⇤(s✏)
|x|s✏ dx = 0

and then w0 ⌘ 0 in B0(⇢0/2), a contradiction since we have earlier obtained that
w0(0) = 1. This proves proposition 4.5.3 when (4.69) holds, and therefore this ends
Step 3.

Step 4: We assume that

lim
✏!0

d(y✏, @⌦)

l✏
= 0(4.71)

We note that then one also has from (4.67)

d(y✏, @⌦)

�✏
=

|y✏|s✏
�s✏✏

d(y✏, @⌦)

l✏
= o(1) as ✏! 0

and

lim
✏!0

y✏ = y0 2 @⌦

Let T be a parametrisation of the boundary @⌦ as in (4.18) around the point p = y0
For all ✏ > 0 let

ũ✏ = u✏ � T on U \ {x1  0}
For i, j = 1, . . . , n, let gij = (@iT , @jT ) be the metric induced by the chart T on
the domain U \ {x1 < 0}, and let �g denote the Laplace-Beltrami operator with
respect to the metric g. From equation (4.4) it follows that for any ✏ > 0, ũ✏ satisfies
weakly the equation

8
><

>:

�gũ✏ + a � T (x)ũ✏ =
ũ2⇤(s

✏

)�1
✏

|T (x)|s✏ in U \ {x1 < 0}

ũ✏ = 0 on U \ {x1 = 0}
(4.72)

Let z0✏ 2 @⌦ be such that

|z0✏ � y✏| = d(y✏, @⌦) for ✏ > 0

And let ỹ✏, z̃0✏ 2 U be such that

T (ỹ✏) = y✏ and T (z̃0✏) = z0✏

Then it follows from the properties of the boundary chart T , that

lim
✏!0

ỹ✏ = 0 = lim
✏!0

z̃0✏ , (ỹ✏)1 < 0 and (z̃0✏)1 = 0

We let

w̃✏ =
ũ✏ (z̃0✏ + �✏x)

ũ✏(ỹ✏)
for x 2 B0(✏0/4) \ {x1  0}
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w̃✏ is well defined for ✏ > 0 small su�ciently enough. Let

g̃✏ = g (z̃0✏ + �✏x)

Then for ✏ su�ciently small, w̃✏ satisfies weakly the equation
8
>><

>>:

�g̃
✏

w̃✏ + �2✏ (a � T (z̃0✏ + �✏x)) w̃✏ =
w̃2⇤(s

✏

)�1
✏����

T (z̃0
✏

+�

✏

x)
�

✏

����
s

✏

in B0(✏0/4) \ {x1 < 0}

w̃✏ = 0 on B0(✏0/4) \ {x1 = 0}
(4.73)

From proposition 4.5.1 we have for a constant C

|T (z̃0✏ + �✏x)� x✏|
n�2
2 w̃✏(x)  C�

n�2
2

✏ ,
✓ |T (z̃0✏ + �✏x)� x✏|

�✏

◆n�2
2

w̃✏(x)  C

It follows from the properties of the map T0, that for ✏ > 0 su�ciently small

|T (z̃0✏ + �✏x)� x✏|
�✏

� ✏0
2

for x 2 B0(✏0/4) \ {x1  0}
So there exists a constant C0 > 0 such that for ✏ > 0 su�ciently small we have

w̃✏(x)  C0 for x 2 B0(✏0/4) \ {x1  0}
Again from the properties of the boundary chart T , it follows that for any p > 1
there exists a constant Cp such that

Z

B0(✏0/4)\{x1<0}

2

4 (w̃✏)
2⇤(s

✏

)�1

���T (z̃0
✏

+�
✏

x)
�
✏

���
s
✏

3

5
p

dx  Cp

Z

B0(✏0/4)\{x1<0}

1��� z̃
0
✏

�
✏

+ x
���
s
✏

p dx

Choosing s✏ > 0 su�ciently small it follows that the right hand side of equation
(4.73) is uniformly bounded in Lp for some p > n. Then from standard elliptic esti-
mates (see for instance [14]) we have that, there exists w̃ 2 C1 (B0(✏0/8) \ {x1 5 0} )
such that up to a subsequence

lim
✏!0

w̃✏ = w̃ in C1 (B0(✏0/16) \ {x1  0} )

And therefore, in particular

w̃ ⌘ 0 on B0(✏0/16) \ {x1 = 0}(4.74)

One has for all ✏ > 0

w̃✏

✓
ỹ✏ � z̃0✏
�✏

◆
= 1

And from the properties of the boundary chart T it follows that, for all ✏ > 0 in
this case

|ỹ✏ � z̃0✏|
�✏

= O

✓ |y✏ � z0✏|
�✏

◆
= O

✓
d(y✏, @⌦)

�✏

◆
= o

✓
l✏
�✏

◆
= o(1)

As , lim
✏!0

w̃✏ = w̃ in C1 (B0(✏0/16) \ {x1  0} ) then w̃(0) = 1. But this contradicts

what we have obtained in (4.74), proving proposition 4.5.3 when (4.71) holds, and
ends Step 4.

These four steps complete the proof of proposition 4.5.3. ⇤
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4.6. Refined Blowup Analysis II

Now we proceed to prove the main theorem of this section.

Theorem 4.6. Let ⌦ be a bounded smooth oriented domain of Rn, n � 3 ,
such that 0 2 @⌦, and let a 2 C1(⌦) be such that the operator � + a is coercive
in ⌦. Let (s✏)✏>0 2 (0, 2) be a sequence such that lim

✏!0
s✏ = 0. Suppose that the

sequence (u✏)✏>0 2 H2
1,0(⌦), where for each ✏ > 0, u✏ satisfies (4.4) and (4.5), is a

blowup sequence, i.e

u✏ * 0 weakly in H2
1,0(⌦) as ✏! 0

Then, there exists C > 0 such that for all ✏ > 0

u✏(x)  C

✓
µ✏

µ2
✏ + |x� x✏|2

◆n�2
2

for all x 2 ⌦

where

µ
�n�2

2
✏ = u✏(x✏) = max

x2⌦
u✏(x).

Proof. Step 1: we claim that for any ↵ 2 (0, n�2), there exists C↵ > 0 such
that for all ✏ > 0

|x� x✏|↵ µ
n�2
2 �↵

✏ u✏(x)  C↵ for all x 2 ⌦(4.75)

Proof. Since the operator �+ a is coercive on ⌦ and a 2 C(⌦), there exists
U0 ⇢ Rn an open set such that ⌦ ⇢⇢ U0, and there exists a1 > 0, A1 > 0 such that

Z

U0

|r'|2 dx+

Z

U0

(a� a1)'
2 dx � A1

Z

U0

'2 dx for all ' 2 C1
c (U0)

In other words the operator �+(a�a1) is coercive on U0. Here, we have extended
a by 0 outside ⌦ (the resulting function is not necessarily continuous on Rn).

Let G̃ : U0⇥U0\{(x, x) : x 2 U0} �! R be the Green’s function of the operator �+
(a�a1) with Dirichlet boundary conditions. G̃ satisfies in the sense of distributions

�G̃(x, ·) + (a� a1)G̃(x, ·) = �x(4.76)

Since the operator �+ (a� a1) is coercive on U0, G̃ exists. See Robert [17].

We set for all ✏ > 0

G̃✏(x) = G̃(x✏, x) for x 2 U0\{x✏}(4.77)

G̃✏ satisfies for all ✏ > 0

0 < G̃✏(x) <
C

|x� x✏|n�2 for x 2 U0\{x✏}

here C is a constant. Moreover there exists �0 > 0 and C0 > 0 such that for all
✏ > 0

G̃✏(x) >
C0

|x� x✏|n�2 and
|rG̃✏(x)|
|G̃✏(x)|

>
C0

|x� x✏| for x 2 Bx
✏

(�0)\{x✏} ⇢⇢ U0

(4.78)
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We define the operator

L✏ = �+ a� u2⇤(s
✏

)�2
✏

|x|s✏

Step 1.1: We claim that there exists ⌫0 2 (0, 1) such that given any ⌫ 2 (0, ⌫0)
there exists R1 > 0 such that for R > R1 and ✏ > 0 su�ciently small we have

L✏G̃
1�⌫
✏ > 0 in ⌦\Bx

✏

(Rk✏)(4.79)

We prove the claim. We choose ⌫0 2 (0, 1) such that for any ⌫ 2 (0, ⌫0) one has

⌫ (a� a1) � �a1
2

in ⌦

Fix ⌫ 2 (0, ⌫0). We have for all ✏ > 0 su�ciently small

L✏G̃1�⌫
✏

G̃1�⌫
✏

= (1� ⌫)
�G̃✏

G̃✏

+ a� u2⇤(s
✏

)�2
✏

|x|s✏ + ⌫(1� ⌫)
|rG̃✏|2
|G̃✏|2

in ⌦\{x✏}

Using (4.76) we then obtain

L✏G̃1�⌫
✏

G̃1�⌫
✏

=a1 + ⌫(a� a1) + ⌫(1� ⌫)
|rG̃✏|2
|G̃✏|2

� u2⇤(s
✏

)�2
✏

|x|s✏ in ⌦\{x✏}

� a1
2

+ ⌫(1� ⌫)
|rG̃✏|2
|G̃✏|2

� u2⇤(s
✏

)�2
✏

|x|s✏ in ⌦\{x✏}

Let |x� x✏| � �0,where �0 is as in (4.78), then from corollary 4.5.1 we have

lim
✏!0

u2⇤(s
✏

)�2
✏

|x|s✏ = 0 in C(⌦\Bx
✏

(�0))

Hence for ✏ > 0 su�ciently small we have for ⌫ 2 (0, ⌫0)

L✏G1�⌫
✏

G1�⌫
✏

> 0 for x 2 ⌦\Bx
✏

(�0)

By strong pointwise estimates, proposition 4.5.3 we have that, given any ⌫ 2 (0, ⌫0),
there exists R1 > 0 such that for any R > R1

sup
⌦\B

x

✏

(Rk
✏

)
|x� x✏|

n�2
2 u✏(x) 


⌫(1� ⌫)

4
C2

0

�n�2
4

Here C0 is as in (4.78). And then using proposition 4.5.2 we obtain for ✏ > 0 small

sup
⌦\B

x

✏

(Rk
✏

)

u2⇤(s
✏

)�2
✏

|x|s✏ = sup
⌦\B

x

✏

(Rk
✏

)


u2⇤(s

✏

)�2�s
✏

✏

✓
u✏

|x|
◆s

✏

�


✓
⌫(1� ⌫)

4
C2

0

◆ 4�ns

✏

2 1

|x� x✏|
4�ns

✏

2

Cs
✏

|x� x✏|ns✏/2

 ⌫(1� ⌫)

2

C2
0

|x� x✏|2
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Therefore if x 2 Bx
✏

(�0)\Bx
✏

(Rk✏) then with the help of (4.78) we obtain for ✏ > 0
small

L✏G1�⌫
✏

G1�⌫
✏

� a1
2

+
⌫(1� ⌫)

2

C2
0

|x� x✏|2
> 0

This proves the claim and ends Step 1.1. Hence our claim follows.

Step 1.2: Let ⌫ 2 (0, ⌫0) and R > R1. We claim that there exists C(R) > 0 such
that for ✏ > 0 small

L✏

⇣
C(R)µ

n�2
2 �⌫(n�2)

✏ G1�⌫
✏

⌘
> L✏u✏ in ⌦\Bx

✏

(Rk✏)

C(R)µ
n�2
2 �⌫(n�2)

✏ G1�⌫
✏ > u✏ on @ (⌦\Bx

✏

(Rk✏))(4.80)

We prove the claim. Since L✏u✏ = 0 in ⌦, so it follows from (4.79) that

L✏

⇣
C(R)µ

n�2
2 �⌫(n�2)

✏ G1�⌫
✏

⌘
> L✏u✏

in ⌦\Bx
✏

(Rk✏) for R > R1 and ✏ > 0 su�ciently small. With (4.78) we obtain for
✏ > 0 small

u✏(x)

µ
n�2
2 �⌫(n�2)

✏ G1�⌫
✏ (x)

 µ
�n�2

2
✏

µ
n�2
2 �⌫(n�2)

✏

(Rk✏)
(n�2)(1�⌫)

C1�⌫
0

for x 2 ⌦ \ @Bx
✏

(Rk✏)

=

✓ |x✏|
µ✏

◆s
✏

(n�2)(1�⌫)
2 R(n�2)(1�⌫)

C1�⌫
0

 (2R)(n�2)(1�⌫)

C1�⌫
0

since lim
✏!0

✓
µ✏

|x✏|
◆s

✏

= 1

So for x 2 @ (⌦\Bx
✏

(Rk✏)) one has for ✏ > 0 small

u✏(x)

µ
n�2
2 �⌫(n�2)

✏ G1��
✏ (x)

 C(R) for x 2 ⌦ \ @Bx
✏

(Rk✏)

This proves the claim and ends Step 1.2.

Step 1.3: Let ⌫ 2 (0, ⌫0) and R > R1. Since G1�⌫
✏ > 0 in ⌦\Bx

✏

(Rk✏) and
L✏G1�⌫

✏ > 0 in ⌦\Bx
✏

(Rk✏), it follows from [3] that the operator L✏ satisfies the
comparison principle. Then from (4.80) we have that for ✏ > 0 small

u✏(x)  C(R)µ
n�2
2 �⌫(n�2)

✏ G1�⌫
✏ (x) for x 2 ⌦\Bx

✏

(Rk✏)

Then with (4.77) we get that

|x� x✏|(n�2)(1�⌫) u✏(x)  C(R)µ
n�2
2 �⌫(n�2)

✏ for x 2 ⌦\Bx
✏

(Rk✏)

Taking ↵ = (n� 2)(1� ⌫), we have for ↵ close to n� 2

|x� x✏|↵ µ
n�2
2 �↵

✏ u✏(x)  C↵ for x 2 ⌦\Bx
✏

(Rk✏)

Let ↵0 2 (0,↵), then

|x� x✏|↵
0
µ

n�2
2 �↵0

✏ u✏(x) =

✓
µ✏

|x� x✏|
◆↵�↵0

|x� x✏|↵ µ
n�2
2 �↵

✏ u✏(x)


 ✓

µ✏

|x✏|
◆s

✏

/2 1

R

!↵�↵0

|x� x✏|↵ µ
n�2
2 �↵

✏ u✏(x) for x 2 ⌦\Bx
✏

(Rk✏)
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Where we have used (4.37). Hence for all ↵ 2 (0, n� 2) we have that

|x� x✏|↵ µ
n�2
2 �↵

✏ u✏(x)  C↵ for x 2 ⌦\Bx
✏

(Rk✏)

Obviously one has for ↵ 2 (0, n� 2)

|x� x✏|↵ µ
n�2
2 �↵

✏ u✏(x)  C↵ for x 2 Bx
✏

(Rk✏)

These two inequalities prove (4.75). This ends Step 1.3 and also Step 1. ⇤

Next we show that one can infact take ↵ = n� 2 in (4.75).

Step 2: We claim that there exists C > 0 such that for all ✏ > 0

|x� x✏|n�2 u✏(x✏) u✏(x)  C for all x 2 ⌦(4.81)

Proof. Let y✏ 2 ⌦ be such that

|y✏ � x✏|n�2 u✏(x✏) u✏(y✏) = sup
x2⌦

|x� x✏|n�2 u✏(x✏) u✏(x)

Then (4.81) is equivalent to proving that

|y✏ � x✏|n�2 u✏(x✏) u✏(y✏) = O(1) as ✏! 0

We have the following two cases.

Step 2.1: Suppose that

|x✏ � y✏| = O(µ✏) as ✏! 0

By definition (4.14) it follows that

|y✏ � x✏|n�2 u✏(x✏) u✏(y✏)  |y✏ � x✏|n�2 µ2�n
✏

This proves (4.81) in this case and ends Step 2.1.

Step 2.2: Suppose that

lim
✏!0

|x✏ � y✏|
µ✏

= +1 as ✏! 0

We let for ✏ > 0

v̂✏(x) = µ
n�2
2

✏ u✏ (µ✏x+ x✏) for x 2 ⌦� x✏

µ✏

Then from (4.75), it follows that for any ↵ 2 (0, n � 2), there exists C↵ > 0 such
that for all ✏ > 0

|µ✏x|↵ µ
n�2
2 �↵

✏ u✏ (µ✏x+ x✏)  C↵ for x 2 ⌦,

|x|↵ v̂✏(x)  C↵ for x 2 ⌦� x✏

µ✏

And so

v̂✏(x) + |x|↵ v̂✏(x)  1 + C↵ = C 0
↵ for x 2 ⌦� x✏

µ✏

Hence for all ✏ > 0 and ↵ 2 (0, n� 2), we have for a constant C 0
↵ > 0

v̂✏(x)  C 0
↵

1 + |x|↵ for x 2 ⌦� x✏

µ✏
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Let G 2 C2(⌦ ⇥ ⌦\{(x, x) : x 2 ⌦}) be the Green’s function of the coercive
operator � + a with Dirichlet boundary conditions on ⌦. It follows from Green’s
representation formula that

u✏(y✏) =

Z

⌦

G(x, y✏)
u2⇤(s

✏

)�1
✏ (x)

|x|s✏ dx for all ✏ > 0

using the estimates on Green’s function this becomes

u✏(y✏)  C

Z

⌦

1

|x� y✏|n�2

u2⇤(s
✏

)�1
✏ (x)

|x|s✏ dx for all ✏ > 0(4.82)

where C > 0 is a constant. We write the above integral as follows

u✏(y✏)  C

Z

⌦

✓
u✏(x)

|x|
◆s

✏ 1

|x� y✏|n�2 u✏(x)
2⇤(s

✏

)�1�s
✏ dx for all ✏ > 0

Using Hölder inequality and then by Hardy inequality (4.8) we get for all ✏ > 0

u✏(y✏) C

0

@
Z

⌦

|u✏(x)|2
|x|2 dx

1

A
s
✏

/20

@
Z

⌦

 
1

|x� y✏|n�2

! 2
2�s

✏

u✏(x)
(2⇤(s

✏

)�1�s
✏

) 2
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✏ dx

1

A

2�s

✏

2

C

0

@
✓

2

n� 2

◆2 Z

⌦

|ru✏|2 dx

1

A
s
✏

/20

@
Z

⌦

 
1

|x� y✏|n�2

! 2
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✏

u✏(x)
(2⇤(s

✏

)�1�s
✏

) 2
2�s

✏ dx

1

A

2�s

✏

2

for all ✏ > 0

The sequence (u✏)✏>0 is bounded in H2
1,0(⌦) as shown in (4.11), so it follows that

there exists a constant C > 0 such that for ✏ > 0 small

u✏(y✏)
2

2�s

✏  C

Z

⌦

1

|x� y✏|
2(n�2)
2�s

✏

u✏(x)
(2⇤(s

✏

)�1�s
✏

) 2
2�s

✏ dx

With a change of variables the above integral becomes

u✏(y✏)
2

2�s

✏  C
µn
✏

µ
n�2
2�s

✏

(2⇤(s
✏

)�1�s
✏

)
✏

Z

⌦�x

✏

µ

✏

1

|y✏ � x✏ � µ✏x|
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2�s

✏
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(2⇤(s

✏

)�1�s
✏

) 2
2�s
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And so we get that for ✏ > 0 small

⇣
µ
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2
✏ u✏(y✏)
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2�s
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Z

⌦�x

✏

µ

✏
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✏
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✏
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✏
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✏
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✏

|
2 }

1
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2(n�2)
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✏
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(2⇤(s

✏

)�1�s
✏

) 2
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✏ dx

+ C

Z

⌦�x

✏

µ

✏

\{|y
✏

�x
✏

�µ
✏

x| |y
✏

�x

✏

|
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1
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✏

v̂✏(x)
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✏
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✏

) 2
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(4.83)
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We estimate the above two integrals separately. First we have for ✏ > 0 small

Z

⌦�x

✏

µ

✏

\{|y
✏

�x
✏

�µ
✏

x|� |y
✏

�x

✏

|
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2(n�2)
2�s

✏
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(2⇤(s

✏

)�1�s
✏

) 2
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2(n�2)
2�s

✏

|y✏ � x✏|
2(n�2)
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✏

Z

⌦�x

✏

µ

✏

v̂✏(x)
(2⇤(s

✏

)�1�s
✏

) 2
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 C̃↵

|y✏ � x✏|
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✏

Z

⌦�x

✏

µ

✏

✓
1

1 + |x|↵
◆(2⇤(s

✏

)�1�s
✏

) 2
2�s

✏
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For ↵ close to n� 2 we have

Z

⌦�x

✏

µ

✏

✓
1

1 + |x|↵
◆(2⇤(s

✏

)�1�s
✏

) 2
2�s

✏

dx = O(1) as ✏! 0

So we obtain that

Z

⌦�x

✏

µ

✏
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✏

�x
✏

�µ
✏

x|� |y
✏

�x

✏

|
2 }
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⇤(s

✏

)�1
✏ (x)

|y✏ � x✏ � µ✏x|n�2 dx = O

 
1
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2�s

✏

!
as ✏! 0

(4.84)

On the other hand for ✏ > 0 small
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✏
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✏
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✏ dx

 C↵

Z

⌦�x

✏

µ

✏

\{|y
✏
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✏
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✏
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Since lim
↵!n�2

h
(2⇤(s✏)� 1� s✏)

2↵
2�s

✏

� n
i
=
h
2� n�2

2�s
✏

s✏
i
for each ✏ > 0, so taking

↵ close to (n� 2), we obtain for ✏ su�ciently small

Z

⌦�x

✏

µ

✏

\{|y
✏

�x
✏

�µ
✏

x| |y
✏
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✏

|
2 }
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⇤(s

✏

)�1
✏ (x)

|y✏ � x✏ � µ✏x|n�2 dx = o(1)

 
1

|y✏ � x✏|n�2

! 2
2�s

✏

as ✏! 0

as lim
✏!0

|x✏ � y✏|
µ✏

= +1 as ✏! 0(4.85)

Combining (4.83), (4.84) and (4.85) we obtain that

⇣
µ
�n�2

2
✏ u✏(y✏)

⌘ 2
2�s

✏  O

 
1

|y✏ � x✏|
2(n�2)
2�s

✏

!
as ✏! 0

And

|y✏ � x✏|n�2 µ
�n�2

2
✏ u✏(y✏)  O (1) as ✏! 0

This proves (4.81) and ends Step 2.2 and then Step 2. ⇤

Step 3: In (4.81) we have obtained that there exists C > 0 such that for all ✏ > 0

|x� x✏|n�2 µ
�n�2

2
✏ u✏(x)  C for all x 2 ⌦

By definition (4.14), it then get that for all ✏ > 0

⇣
µ2
✏ + |x� x✏|2

⌘n�2
2

µ
�n�2

2
✏ u✏(x)  C for all x 2 ⌦

This completes the proof of Theorem 4.6. ⇤

4.7. Localizing the Singularity: The Interior Blow-up Case

In this section, we prove the following:

Theorem 4.7. Let ⌦ be a bounded smooth oriented domain of Rn, n � 3 ,
such that 0 2 @⌦, and let a 2 C1(⌦) be such that the operator � + a is coercive
in ⌦. Let (s✏)✏>0 2 (0, 2) be a sequence such that lim

✏!0
s✏ = 0. Suppose that the

sequence (u✏)✏>0 2 H2
1,0(⌦), where for each ✏ > 0, u✏ satisfies (4.4) and (4.5), is a

blowup sequence, i.e

u✏ * 0 weakly in H2
1,0(⌦) as ✏! 0

We let (µ✏)✏ 2 (0,+1) and (x✏)✏ 2 ⌦ be such that

µ
�n�2

2
✏ = u✏(x✏) = max

x2⌦
u✏(x).

We define x0 := lim✏!0 x✏ and we assume that

x0 2 ⌦ is an interior point.
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Then

lim
✏!0

s✏
µ2
✏

= 2⇤K(n, 0)
2⇤

2⇤�2 dn a(x0) for n � 5

lim
✏!0

s✏
µ2
✏ log (1/µ✏)

= 256!3K(4, 0)2 a(x0) for n = 4
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✏!0

s✏
µn�2
✏

= �nb2nK(n, 0)n/2gax0
(x0) for n = 3 or a ⌘ 0.

where gax0
(x0) the mass at the point x0 2 ⌦ for the operator �+ a, where

dn =

Z

Rn

1
⇣
1 + |x|2

n(n�2)

⌘n�2 dx for n � 5 ; bn =

Z

Rn

1
⇣
1 + |x|2

n(n�2)

⌘ (n+2)
2

dx

and !3 is the area of the 3- sphere.

The proof goes through six steps.

Step 1: We first state and prove the celebrated Pohozaev identity.

Lemma 4.7.1 (Pohozaev Identity). Let U be a bounded smooth domain in Rn,
let p0 2 Rn be a point and let u 2 C2(U). We have
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(4.86)

here ⌫ is the outer normal to the boundary @U .

Proof. Integration by parts gives us
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Step 2: Next using the above Pohozaev Identity we obtain
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Lemma 4.7.2. Let Bx0(�) ⇢ ⌦. We have for all ✏ > 0
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Proof. One has for 1  j  n
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Using the Pohozaev identity (4.86) we then have the lemma. ⇤

Since x0 2 ⌦, let � > 0 be such that Bx0(3�) ⇢ ⌦. Note that then lim
✏!0

|x✏|s✏ = 1,

and it follows from (4.17) that lim
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We will estimate each of the terms in the above Pohozaev identity and calculate
the limit as ✏ ! and � ! 0. It will depend on the dimension n. Let Ga : ⌦ ⇥
⌦ \ {(x, x) : x 2 ⌦} �! R be the Green’s function of the coercive operator � + a
in ⌦ with Dirichlet boundary conditions. For existence and the properties of Ga

see Ghoussoub-Robert [9] (Theorem B.1) and Robert [17]. For a fixed point x, let
Ga

x(y) = Ga(x, y) for y 2 ⌦\{x}.
Step 3: We prove the following convergence outside x0:
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Proof. Step 3.1: We fix y0 2 ⌦ such that y0 6= x0. We claim that
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Recall our definition of v✏ in theorem 4.4. With a change of variable we then obtain
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and so
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This proves the claim and ends Step 3.1.

Step 3.2: Let ⌦0 ⇢⇢ ⌦00 ⇢⇢ ⌦ \ {x0} be a compactly contained open sets. From
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Proof. Recall our definition of v✏ in Theorem 4.4. With a change of variable
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We have obtained earlier in theorem (4.4) that lim
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Then passing to limits, and using Theorems 4.4 and 4.6 we obtain by Lebesgue
dominated convergence theorem
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This proves (4.88) and ends Step 4. ⇤

Step 5: We prove Theorem 4.7 for n � 4.

Using the Pohozaev identity we have obtained in (4.87) that
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Step 5.1: we assume here that n � 5. We have for ✏ > 0
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First we calculate the right hand side of the above equality. Recall our definition
of v✏ in theorem 4.4. With a change of variable we obtain
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We have that lim
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This proves Theorem 4.7 when n � 5 and ends Step 5.1.

Step 5.2: We now deal with the case n = 4. We have for ✏ > 0
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With a change of variable we obtain
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We have that lim
✏!0
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= 1 and from theorem 4.6, it follows that there exists a
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Passing to the limits as ✏! 0 in (4.90) we then obtain using Proposition 4.7.1 and
(4.88)
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This proves Theorem 4.7 for n = 4, and therefore ends Step 5.2 and Step 5.

Step 6: We now deal with the case of dimension n = 3. Recall from the introduc-
tion that we write the Green’s function Ga as

Ga
x(y) =

1

4⇡|x� y| + gax(y) for all x, y 2 ⌦, x 6= y

and gax 2 C2(⌦\{x})\C0,✓(⌦) for some 0 < ✓ < 1, and ga is called the regular part
of the Green’s function Ga. In particular, when n = 3 or a ⌘ 0, mx(⌦, a) := gax(x)
is defined for all x 2 ⌦ and is called the mass of the operator �+ a. Note that for
any x 2 ⌦, gax satifies the equation
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The proof goes as in Hebey-Robert [12]. We omit it here.
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We now exploit the Pohozaev identity. Using the Pohozaev identity we have ob-
tained in (4.87) that
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Multiplying both the sides by µ�1
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It follows from Proposition 4.7.1 that
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One has for n = 3
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Using (4.91) it then follows that
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In theorem 4.6 we have obtained that there exists a constant C > 0 such that for
all x 2 ⌦, µ�1/2
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Plugging all these together in (4.92) and using (4.88) we then have
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This proves Theorem 4.7 in the case n = 3.

4.8. Localizing the Singularity: The Boundary Blow-up Case

This section is devoted to the proof of the following result:

Theorem 4.8. Let ⌦ be a bounded smooth oriented domain of Rn, n � 3 ,
such that 0 2 @⌦, and let a 2 C1(⌦) be such that the operator � + a is coercive
in ⌦. Let (s✏)✏>0 2 (0, 2) be a sequence such that lim

✏!0
s✏ = 0. Suppose that the

sequence (u✏)✏>0 2 H2
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(3) If n � 5. Then as ✏! 0
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4.8.1. Convergence to Singular Harmonic Functions. Let Ga : ⌦⇥⌦\
{(x, x) : x 2 ⌦} �! R be the Green’s function of the coercive operator � + a in
⌦ with Dirichlet boundary conditions. For existence and the properties of Ga see
Ghoussoub-Robert [9] (Theorem B.1) and Robert [17]. For a fixed point x, we let
Ga

x(y) = Ga(x, y) for y 2 ⌦\{x}. One has the following result for the asymptotic
analysis of the Green’s function Ga, the proof of which is in Proposition 5 of [17]
and Proposition 12 of [7].

Theorem 4.9 ([7, 17]). Let (x✏)✏>0 2 ⌦ and let (r✏)✏>0 2 (0,+1) be such
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where !n�1 is the area of the (n�1)- sphere. Moreover for a fixed x 2 Rn,
this convergence holds uniformly in C2
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as in (4.18) around the point p = x0. We write T �1(x✏) = ((x✏)1, x0
✏).
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where ⇡ : Rn ! Rn defined by ⇡((x1, x0)) 7! (�x1, x0) is the reflection
across the plane {x : x1 = 0}. Moreover for a fixed x 2 Rn

�, this conver-
gence holds uniformly in C2

loc(Rn
�\{x}).

Next we show that the pointwise behaviour of the blow up sequence (u✏)✏>0

is well approximated by bubbles. Note that the following proposition holds with
x0 2 ⌦, in the interior or on the boundary.
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Proposition 4.8.1. We set for all ✏ > 0
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with ⇡T = T � ⇡ � T �1, T is a parametrisation of the boundary @⌦ as
in (4.18) around the point p = x0 2 @⌦ where lim
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Proof. It follows from the estimates on the Green’s function Ga that there
exists a constant C > 0 such that for all ✏ > 0
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Ga(x, y✏)
u2⇤(s

✏

)�1
✏ (x)

|x|s✏ dx  C
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B@
Z

⌦\B
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✏

(Rµ
✏

)

 
1

|x� y✏|n�2

! 2
2�s

✏

u✏(x)
(2⇤(s

✏

)�1�s
✏

) 2
2�s

✏ dx

1

CA

2�s

✏

2

By the strong pointwise bound on u✏ we then have for ✏ > 0 small

Z

⌦\B
x

✏

(Rµ
✏

)

Ga(x, y✏)
u2⇤(s

✏

)�1
✏ (x)

|x|s✏ dx 

C

0

B@
Z

⌦\B
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✏

(Rµ
✏

)

 
1

|x� y✏|n�2
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2�s

✏

✓
µ✏
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✏ + |x� x✏|2

◆(2⇤(s
✏

)�1�s
✏

) n�2
2�s

✏

dx

1
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2�s

✏

2

Let

D✏ =

⇢
x 2 Rn : |x� y✏| � 1

2

p
µ2
✏ + |x✏ � y✏|2

�
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We split the above integral into two terms

Z

⌦\B
x

✏
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✏
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✏
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Z
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✏
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✏

(Rµ
✏
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1

|x� y✏|n�2
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2�s

✏

✓
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✏ + |x� x✏|2

◆(2⇤(s
✏

)�1�s
✏
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✏
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+

Z

(Rn\D
✏

)\(⌦\B
x

✏

(Rµ
✏
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1

|x� y✏|n�2
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2�s

✏

✓
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µ2
✏ + |x� x✏|2

◆(2⇤(s
✏

)�1�s
✏

) n�2
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✏
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We have for some constant C > 0

Z
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✏
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✏
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✏
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1

|x� y✏|n�2

! 2
2�s

✏

✓
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◆(2⇤(s
✏

)�1�s
✏

) n�2
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✏
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✏ + |x✏ � y✏|2)

n�2
2�s

✏

Z

Rn\B
x

✏

(Rµ
✏

)

✓
µ✏

µ2
✏ + |x� x✏|2

◆(2⇤(s
✏

)�1�s
✏

) n�2
2�s

✏
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 C

✓
µ✏

(µ2
✏ + |x✏ � y✏|2)

◆ n�2
2�s

✏

Z

Rn\B0(R)

✓
1

1 + |x|2
◆(2⇤(s

✏

)�1�s
✏

) n�2
2�s

✏

dx

On the other hand there exists C 0 > 0 such that for x /2 D✏ we have for ✏ > 0

|y✏ � x✏|2 + µ2
✏  C 0 �|x� x✏|2 + µ2

✏

�
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Consequently for some C > 0

Z

(Rn\D
✏
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✏

(Rµ
✏
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✏

✓
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✏
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✏
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✏
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✏

Z
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✏

)\(⌦\B
x

✏
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✏
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✏

Z
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✏
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2

p
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✏
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✏
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1

|x� y✏|n�2
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2�s

✏
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✓
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µ2
✏ + |x✏ � y✏|2
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2�s

✏

✓
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✏
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✏
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✏
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✏ + |x✏ � y✏|2)

4�ns

✏

2(2�s

✏

)
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✓
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µ2
✏ + |x✏ � y✏|2
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✏

✓
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)
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✓
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µ2
✏ + |x✏ � y✏|2

◆ n�2
2�s

✏

✓
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✏

µ2
✏ + |y✏ � x✏|2

◆ 4�ns

✏

2(2�s

✏

)
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✓
µ✏

µ2
✏ + |x✏ � y✏|2

◆ n�2
2�s

✏

0

@ 1

1 + |y
✏

�x
✏

|2
µ2
✏

1

A

4�ns

✏

2(2�s

✏

)

= o

 ✓
µ✏

µ2
✏ + |x✏ � y✏|2

◆ n�2
2�s

✏

!
If µ✏ = o (|x✏ � y✏|) as ✏! 0

(4.94)

In case |x✏� y✏| = O(µ✏) as ✏! 0, then for R large , (Rn \D✏)\ (⌦ \Bx
✏

(Rµ✏) = ;
for all epsilon ✏ > 0. So (4.94) always holds Combining, we then have for ✏ > 0
small

Z

⌦\B
x

✏

(Rµ
✏

)

Ga(x, y✏)
u2⇤(s

✏

)�1
✏ (x)

|x|s✏ dx 

C

✓
µ✏
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✏ + |x✏ � y✏|2)

◆n�2
2

0

B@
Z

Rn\B0(R)

✓
1

1 + |x|2
◆(2⇤(s

✏

)�1�s
✏

) n�2
2�s

✏

dx+ o(1)

1

CA

2�s

✏

2

 C U✏(y✏) ( ✏R + o(1))
2�s

✏

2

where lim
R!+1

✏R = 0. Passing to limits as ✏ ! 0 and R ! +1, we obtain (4.93).

This ends Step 1. ⇤

We have then for ✏ > 0 small and R > 0 large

u✏(y✏) =

Z

B
x

✏

(Rk
✏

)

Ga(x, y✏)
u2⇤(s

✏

)�1
✏ (x)

|x|s✏ dx+ (o(1) + ✏R)U✏(y✏)
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with a change of variable this becomes

u✏(y✏) =

✓
k✏
µ✏

◆n�2
2

U✏(y✏)

Z

B0(R)

✓
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2
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✏
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✏

| +
k
✏
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✏
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���
s
✏
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+ (o(1) + ✏R)U✏(y✏)

Step 2: We assume that

(4.95) |y✏ � x✏| = O(k✏) as ✏! 0.

Let ✓✏ = y
✏

�x
✏

k
✏

, for ✏ > 0 and let lim
✏!

✓✏ = ✓0. Let K be a compact subset of

Rn \ {✓0}. From theorem(4.9) it then follows that as ✏! 0.

kn�2
✏ Ga(y✏, x✏ + k✏x) =

✓
1
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+ o(1)

◆
1
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uniformly on K. Using the upper bound on Ga, Lebesgue’s dominated convergence
theorem and |x✏|/k✏ � d(x✏, @⌦)/k✏ ! +1 as ✏ ! 0, we have as ✏ ! 0 and
R ! +1
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1
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= (1 + o(1) + ✏R)U✏(y✏) by using Green’s formula forv.

We remark that in case lim
✏!0

d(x✏, @⌦) = 0, Ũ✏ are well defined and one has Ũ
✏

(y
✏

)
U

✏

(y
✏

) =

o(1) as ✏! 0 if |y✏ � x✏| = O(k✏). This proves Proposition 4.8.1 when (4.95) holds
and ends Step 2.

Step 3: We assume that

(4.96) lim
✏!0

|y✏ � x✏|
k✏

= +1

Let

r✏ = |y✏ � x✏|
Then r✏ = o(1) as ✏! 0. For x 2 B0(R) we define for ✏ > 0

AR,✏ =

✓
k2✏ +
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2

Ga(y✏, x✏ + k✏x)

Step 3.1: We assume that lim
✏!0

d(x
✏

,@⌦)
r
✏

= +1.
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Let ✓✏ =
y
✏

�x
✏

r
✏

, for ✏ > 0 and let lim
✏!

✓✏ = ✓0. Then |✓0| = 1. We can write as ✏! 0
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uniformly for all x in any fixed compact subset of Rn. This ends Step 3.1.

Step 3.2: We assume that lim
✏!0
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✏

,@⌦)
r
✏

= ⇢ 2 [0,+1).

In this case the functions Ũ✏ are well defined. Let x0 2 @⌦ be such that lim
✏!0

x✏ ! x0.

Let T be a parametrisation of the boundary @⌦ as in (4.18) around the point p = x0.
We write T �1(x✏) = ((x✏)1, x0

✏) and T �1(y✏) = ((y✏)1, y0✏). For ✏ > 0, let
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since D0T is an isometry. Independently we have
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✓
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1� Ũ✏(y✏)
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!
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This ends Step 3.2.
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Since for all R > 0
Z

B0(R)

v2
⇤�1 dx =

Z

B0(R)

�v dx = �
Z

@B0(R)

@⌫v d� =
1

n

!n�1Rn

(1 + R2

n(n�2) )
n/2

we obtain Proposition 4.8.1 in all the cases. ⇤

Using Proposition 4.8.1, we derive the following when the sequence of blowup
points converge to a point on the boundary

Proposition 4.8.2. Let (u✏)✏>0 2 H2
1,0(⌦) be such that for each ✏ > 0, u✏

satisfies (4.4) and (4.5). We assume that u✏ * 0 weakly in H2
1,0(⌦) as ✏ ! 0. We

let x0 := lim✏!0 x✏. Let r✏ = d(x✏, @⌦). We assume that

lim
✏!0

r✏ = 0.

Therefore, lim
✏!0

x✏ = x0 2 @⌦. Let T be a parametrisation of the boundary @⌦ as in

(4.18) around the point p = x0. We write T �1(x✏) = ((x✏)1, x0
✏). For ✏ > 0, let

ṽ✏(x) :=
rn�2
✏

µ
n�2
2

✏

u✏ � T ((0, x0
✏) + r✏x) for x 2 U � (0, x0

✏)

r✏
\ {x1  0}

Then

lim
✏!0

ṽ✏(x) = (n(n� 2))
n�2
2

✓
1

|x� ✓0|n�2
� 1

|x� ⇡(✓0)|n�2

◆
in C1

loc(Rn
� \ {✓0})

where

✓0 = lim
✏!0

✓✏, ✓✏ =

✓
(x✏)1
r✏

, 0

◆
2 Rn

�

and ⇡ : Rn ! Rn defined by ⇡((x1, x0)) 7! (�x1, x0) is the reflection across the
plane {x : x1 = 0}.

Proof. Since D0T = IRn we have

d(x✏, @⌦) = (1 + o(1)) |(x✏)1|
Let ✓✏ be a sequence of points in Rn

� defined by

✓✏ =

✓
(x✏)1
r✏

, 0

◆
for ✏ > 0

Then it follows that

✓0 = lim
✏!0

✓✏ = (�1, 0) 2 Rn
� and ⇡(✓0) = (1, 0) 2 Rn

+

Let R > 0. ṽ✏ is defined in B0(R) \ {x1  0} for ✏ > 0 small. It follows from the
strong upper bounds obtained in Theorem 4.6 that there exists a constant C > 0
such that for ✏ > 0 small we have

0  ṽ✏(x)  C

✓
r2✏

|T ((0, x0
✏) + r✏x)� x✏|2

◆n�2
2

for x 2 B0(R) \ {x1 < 0}
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For any x 2 B0(R) \ {x1  0} we get from Proposition 4.8.1 that as ✏! 0

ṽ✏(x) = (1 + o(1))
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✏

µ
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k2✏ +
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✏
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✏
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✏
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✏
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k✏
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⇣
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✏

1
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2

�

0
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⇣
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(4.97)

Fom the properties of the boundary map T one obtains that for any x 2 B0(R) \
{x1  0}:

����
T ((0, x0

✏) + r✏x)� x✏

r✏

���� =
����
T ((0, x0

✏) + r✏x)� T ((0, x0
✏) + r✏((x✏)1/r✏, 0))

r✏

����

= (1 + o(1)) |x� ((x✏)1/r✏, 0)| as ✏! 0

and

����
T ((0, x0

✏) + r✏x)� ⇡T (x✏)

r✏

���� =
����
T ((0, x0

✏) + r✏x)� T ((0, x0
✏) + r✏(�(x✏)1/r✏, 0))

r✏

����

= (1 + o(1)) |x+ ((x✏)1/r✏, 0)| as ✏! 0

Recall that in Theorem 4.4 we have obtained lim
✏!0

k
✏

µ
✏

= 1 and lim
✏!0

k
✏

r
✏

= 0. Passing

to limits as ✏! 0 in (4.97), we then have the following pointwise convergence.

lim
✏!0

ṽ✏(x) =
(n(n� 2))

n�2
2

|x� (1, 0)|n�2
� (n(n� 2))

n�2
2

|x+ (1, 0)|n�2
for x 2 (B0(R) \ {(1, 0)}) \ {x1  0}

(4.98)

For i, j = 1, . . . , n, we let (g̃✏)ij(x) = (@iT ((0, x0
✏) + r✏x) , @jT ((0, x0

✏) + r✏x)), the
induced metric on the domain B0(R) \ {x1 < 0}, and let �g denote the Laplace-
Beltrami operator with respect to the metric g. From eqn (4.4) it follows that given
any R > 0, ṽ✏ weakly satisfies the following equation for ✏ > 0 su�ciently small
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in B0(R) \ {x1 < 0}

ṽ✏ = 0 on B0(R) \ {x1 = 0}
(4.99)

Let D ⇢⇢ Rn
� \ {✓0} be an open set with compact closure. From(4.98) it follows

that there exists a constant CD > 0 such that for all ✏ > 0 su�ciently small

0  ṽ✏(x)  CD for all x 2 D
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Again from the properties of the boundary chart T , it follows that for any p > 1
there exists a constant C 0

D > 0 such that
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Choosing s✏ > 0 su�ciently small it follows that the right hand side of equation
(4.63) is uniformly bounded in Lp(D) for some p > n. Then from standard elliptic
estimates (see for instance [14]) it follows that for anyD0 ⇢⇢ D kṽ✏kC1,↵(D0) = O(1)
as ✏! 0, ↵ > 0 and ṽ✏ vanishes on the boundary D0\{x1 = 0}. Hence the sequence
(ṽ✏)✏>0 is precompact in C1(D0). From (4.98) it therefore follows that
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n�2
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� (n(n� 2))

n�2
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This completes the proof of Proposition 4.8.2. ⇤
4.8.2. Estimates on the blow up rates: The Boundary Case.

Suppose that the sequence of blow up points (x✏)✏>0 converges to a point on the
boundary, i.e suppose

lim
✏!0

x✏ = x0 2 @⌦(4.100)

We let

r✏ = d(x✏, @⌦)(4.101)

Then
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and from (4.25), we have as ✏! 0

µ✏ = o(r✏) and k✏ = o(r✏)

As before, let T be a parametrisation of the boundary @⌦ as in (4.18) around the
point p = x0. We shall apply the Pohozaev identity for the Hardy Sobolev equation
to the domain T �
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(4.102)

for all ✏ > 0 small. We will estimate each of the terms in the integral above and
calculate the limit as ✏! 0. We obtain
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Theorem 4.10. Let ⌦ be a bounded smooth oriented domain of Rn, n � 3 ,
such that 0 2 @⌦, and let a 2 C1(⌦) be such that the operator � + a is coercive
in ⌦. Let (s✏)✏>0 2 (0, 2) be a sequence such that lim

✏!0
s✏ = 0. Suppose that the

sequence (u✏)✏>0 2 H2
1,0(⌦), where for each ✏ > 0, u✏ satisfies (4.4) and (4.5), is a

blowup sequence, i.e
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Proof. For convenience we define
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Step 1: We claim that
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Proof. We write T �1(x✏) = ((x✏)1, x0
✏). For ✏ > 0, let
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(4.103)

Since D0T = IRn we have

d(x✏, @⌦) = (1 + o(1)) |(x✏)1| as ✏! 0

So
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And it further follows that one always has for ✏ small
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Passing to limts as ✏! 0 in (4.103), using Proposition 4.8.2, we get as ✏! 0
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|rṽ|2
2

�
✓
(z � (�1, 0),rṽ) +
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ṽ

◆
@⌫ ṽ
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where h(x) = � (n(n�2))
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ṽ(x) and g(x) := 1

n
n�2
2 (n�2)

n

2 !
n�1

h(x). Then one has
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Therefore we have
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We fix a 0 < � < 1 and calculate
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We have obtained earlier in Theorem 4.4 that lim
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���� 
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k✏
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����+
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|x✏| |x| 
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����+
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����
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����+ �

So for all x 2 B0(�r✏/k✏)
����
x✏

|x✏| +
k✏
|x✏|x

���� � 1� �

Then passing to limits in (4.104), using Theorem 4.4 and the pointwise control of
Theorem 4.6, we obtain by Lebesgue dominated convergence theorem
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✏!0

Z

B
x

✏

(r
✏

�)

u2⇤(s
✏

)
✏

|x|s✏
(x, x✏)

|x|2 dx =

Z

Rn

v2
⇤
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✓
1

K(n, 0)

◆ 2⇤
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And therefore
Z

T (BT �1(x
✏

)(r✏/2))

u2⇤(s
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✏
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(x, x✏)

|x|2 dx =

✓
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◆ 2⇤
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+ o(1) as ✏! 0

This ends Step 2. ⇤

Step 3: We claim that, as ✏! 0,

Z

T (BT �1(x
✏

)(r✏/2))

✓
a+

(x� x✏,ra)

2

◆
u2
✏ dx =

8
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>:

O(µ✏) for n = 3 or a ⌘ 0,

µ2
✏ log

⇣
r
✏

k
✏

⌘
[64!3a(x0) + o(1)] for n = 4,

µ2
✏ [dna(x0) + o(1)] for n � 5.

where

dn =

Z

Rn

1
⇣
1 + |x|2

n(n�2)

⌘n�2 dx for n � 5

Proof. We divide the proof in three steps.

Case 3.1: we assume that n = 3. In Theorem 4.6 we have obtained that there
exists a constant C > 0 such that for all x 2 ⌦, µ�1/2

✏ u✏(x)  C
|x�x

✏

| for all ✏ > 0.
So we obtain

Z

T (BT �1(x
✏

)(r✏/2))

✓
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(x� x✏,ra)
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◆
u2
✏ dx = O(µ✏)

Z

⌦

1

|x|2 dx = O(µ✏)
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Case 3.2: we assume that n = 4. Since D0T = IRn , so for ✏ > 0 su�ciently small
one has

Bx
✏

(r✏/4) ⇢ T �
BT �1(x

✏

)(r✏/2)
� ⇢ Bx

✏

(3r✏/4)

We fix 0 < � < 1 and calculate the following integral. Recall our definition of v✏ in
Theorem 4.4. With a change of variable we obtain

µ�2
✏

log (r✏/k✏)

Z

B
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(�r
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✓
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B0(�r✏/k✏

)

✓
a(x✏ + k✏x) +
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2

◆
v2✏ dx

We have that lim
✏!0

k
✏

µ
✏

= 1 and from Theorem 4.6, it follows that there exists a

constant C > 0 such that as ✏! 0

v✏(x)  C
1

1 +
⇣

k
✏

µ
✏

⌘2
|x|2

 C
1

1 + |x|2

and therefore
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✏!0
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Z

B
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✏
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✏

)

✓
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2

◆
u2
✏ dx

3

75 = 64!3 a(x0)

And hence
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✏

log (r✏/k✏)

Z
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✓
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2
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Case 3.2: We assume that n � 5. Since D0T = IRn , so for ✏ > 0 small one has

Bx
✏

(r✏/4) ⇢ T �
BT �1(x

✏

)(r✏/2)
� ⇢ Bx

✏

(3r✏/4)

We fix a 0 < � < 1 and calculate the following integral. Recall our definition of v✏
in theorem 4.4. With a change of variable we obtain
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✓
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2

◆
u2
✏ dx =

✓
k✏
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2
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k
✏

µ
✏

= 1 and from Theorem 4.6, it follows that there exists a

constant C > 0 such that as ✏! 0
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1
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⇣

k
✏

µ
✏

⌘2
|x|2

1

CA

n�2
2

 C

✓
1

1 + |x|2
◆n�2

2

.

We have that for n � 5,

dn =

Z

Rn

1
⇣
1 + |x|2

n(n�2)

⌘n�2 dx < +1 for n � 5



164 4. BLOW-UP ANALYSIS

Therefore

lim
✏!0

2

64µ�2
✏

Z
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)

✓
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2
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✏ dx

3
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And hence
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2
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Z
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✓
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2
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3
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This ends Step 3.3. ⇤

Combining Steps 1 to 3 in the Pohozaev identity (4.102) yields, as ✏! 0,
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✏!0

s✏rn�2
✏

µn�2
✏

=
nn�1(n� 2)n�1K(n, 0)n/2!n�1
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✓
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2n

⇣
K(n, 0)�n/2 + o(1)

⌘
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✓
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◆n�2✓nn�2(n� 2)n!n�1

2n�1
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◆
= µ2

✏ [dna(x0) + o(1)] if n � 5.

To get extra informations, we di↵erentiate the Pohozaev identity (4.87) with respect
to the jth variable (x✏)j and get

Z
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(4.105)

Step 4: We claim that
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✏
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Proof. We write T �1(x✏) = ((x✏)1, x0
✏). Then as Step 1 above, using Propo-

sition 4.8.2 we have as ✏! 0
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✏
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✏

Z
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✏
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where ṽ✏ and ṽ are as in Step 1 above. In particular

ṽ(x) =
(n(n� 2))

n�2
2

|x� ✓0)|n�2
+ h(x) for x 2 Rn

� \ {✓0}(4.107)

where h(x) = � (n(n�2))
n�2
2

|x�(1,0)|n�2 . Arguing as in Step 1, we get that

Z
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For j = 1 we get
Z
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� @1ṽ @⌫ ṽ

◆
d� = �nn�2(n� 2)n!n�1
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This completes Step 4. ⇤

Step 5: We claim that

Z
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(4.110)

Proof. We proceed as in Step 2 above. We fix a 0 < � < 1 and calculate
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a change of variable
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Then as in Step 2
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And hence we have (4.110). This ends Step 5. ⇤
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Proceeding as in Step 3, for every 1  j  n we have as ✏! 0

Z
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(4.111)

Using the Pohozaev identity (4.105) and the preceding estimates obtained after
Steps 1 to 3, noting that r✏ = d(x✏, @⌦) = (1 + o(1))|x✏,1|, we then obtain that

d(x✏, @⌦) = (1 + o(1))|x✏| as ✏! 0 when n = 3 or a ⌘ 0.

When n = 4, Then as ✏! 0
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Finally, when n � 5, we get as ✏! 0
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Plugging together these estimates and the estimates after Steps 1 to 3 yields The-
orem 4.10. ⇤
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